Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ngăn ngừa nhiễm trùng vết mổ dưới các hệ thống thông gió khác nhau trong môi trường phòng mổ
Tóm tắt
Các hạt sinh học trong môi trường không khí phòng mổ (OR) có thể gây ra nhiễm trùng vết mổ (SSI). Nhiều hệ thống thông gió đã được sử dụng trong phòng mổ để đảm bảo một môi trường cực sạch. Tuy nhiên, tác động của các hệ thống thông gió khác nhau đến việc kiểm soát các hạt mang vi khuẩn (BCP) được phát tán từ đội ngũ phẫu thuật trong quá trình phẫu thuật vẫn chưa rõ ràng. Trong nghiên cứu này, hiệu suất của bốn hệ thống thông gió khác nhau (thông gió luồng không khí laminar dọc (VLAF), thông gió luồng không khí laminar ngang (HLAF), thông gió luồng không khí dọc chênh lệch (DVAF) và thông gió luồng không khí kiểm soát nhiệt độ (TAF)) được đánh giá và so sánh dựa trên nồng độ BCP không gian. Trường dòng khí trong phòng mổ được giải quyết bằng mô hình turbulence k-ε của Nhóm Chuẩn hóa (RNG), và pha BCP được tính toán bằng phương pháp theo dõi hạt Lagrangian (LPT) và mô hình đi bộ ngẫu nhiên rời rạc (DRW). Kết quả cho thấy hệ thống TAF là hệ thống thông gió hiệu quả nhất trong bốn hệ thống để đảm bảo độ sạch của không khí tại khu vực phẫu thuật. Nghiên cứu này cũng chỉ ra rằng độ sạch của không khí trong khu vực phẫu thuật không chỉ phụ thuộc vào lưu lượng không khí của hệ thống thông gió mà còn vào sự phân bố dòng khí, điều này bị ảnh hưởng lớn bởi các vật cản như đèn phẫu thuật và đội ngũ phẫu thuật.
Từ khóa
#nhiễm trùng vết mổ #hệ thống thông gió #phòng mổ #hạt mang vi khuẩn #độ sạch không khíTài liệu tham khảo
Ahl T, Dalen N, Jörbeck H, Hobom J (1995). Air contamination during hip and knee arthroplasties: horizontal laminar flow randomized vs. conventional ventilation. Acta Orthopaedica Scandinavica, 66(1): 17–20
Allegranzi B, Bischoff P, de Jonge S, Kubilay N Z, Zayed B, Gomes S M, Abbas M, Atema J J, Gans S, van Rijen M, Boermeester M A, Egger M, Kluytmans J, Pittet D, Solomkin J S. (2016). New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet. Infectious Diseases, 16(12): e276–e287
Alsved M, Civilis A, Ekolind P, Tammelin A, Andersson A E, Jakobsson J, Svensson T, Ramstorp M, Sadrizadeh S, Larsson P A, Bohgard M, Šantl-Temkiv T, Löndahl J (2018). Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow. Journal of Hospital Infection, 98(2): 181–190
Awad S S (2012). Adherence to surgical care improvement project measures and post-operative surgical site infections. Surgical Infections, 13(4): 234–237
Cao G, Storås M C, Aganovic A, Stenstad L I, Skogås J G (2018). Do surgeons and surgical facilities disturb the clean air distribution close to a surgical patient in an orthopedic operating room with laminar airflow?. American Journal of Infection Control, 46(10): 1115–1122
Chen F, Yu S C M, Lai A C K (2006). Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmospheric Environment, 40(2): 357–367
Chen Q (1995). Comparison of different k-ϵ models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals, 28(3): 353–369
Chow T T, Lin Z, Bai W (2006). The integrated effect of medical lamp position and diffuser discharge velocity on ultra-clean ventilation performance in an operating theatre. Indoor and Built Environment, 15(4): 315–331
Chow T T, Wang J (2012). Dynamic simulation on impact of surgeon bending movement on bacteria-carrying particles distribution in operating theatre. Building and Environment, 57: 68–80
Chow T T, Yang X Y (2003). Performance of ventilation system in a non-standard operating room. Building and Environment, 38(12): 1401–1411
Chow T T, Yang X Y (2004). Ventilation performance in operating theatres against airborne infection: review of research activities and practical guidance. Journal of Hospital Infection, 56(2): 85–92
Chow T T, Yang X Y (2005). Ventilation performance in the operating theatre against airborne infection: numerical study on an ultra-clean system. Journal of Hospital Infection, 59(2): 138–147
Diab-Elschahawi M, Berger J, Blacky A, Kimberger O, Oguz R, Kuelpmann R, Kramer A, Assadian O (2011). Impact of different-sized laminar air flow versus no laminar air flow on bacterial counts in the operating room during orthopedic surgery. American Journal of Infection Control, 39(7): e25–e29
Fischer S, Thieves M, Hirsch T, Fischer K D, Hubert H, Beppler S, Seipp H M. (2015). Reduction of airborne bacterial burden in the OR by installation of unidirectional displacement airflow (UDF) Systems. Medical Science Monitor, 21: 2367–2374
Friberg B, Friberg S (2005). Aerobiology in the operating room and its implications for working standards. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 219(2): 153–160
Gao R, Zhang H, Li A, Wen S, Du W, Deng B (2020). A new evaluation indicator of air distribution in buildings. Sustainable Cities and Society, 53: 101836
Hansen D, Krabs C, Benner D, Brauksiepe A, Popp W (2005). Laminar air flow provides high air quality in the operating field even during real operating conditions, but personal protection seems to be necessary in operations with tissue combustion. International Journal of Hygiene and Environmental Health, 208(6): 455–460
He C, Mackay I M, Ramsay K, Liang Z, Kidd T, Knibbs L D, Johnson G, McNeale D, Stockwell R, Coulthard M G, Long D G, Williams T J, Duchaine C, Smith N, Wainwright C, Morawska L (2017). Particle and bioaerosol characteristics in a paediatric intensive care unit. Environment International, 107: 89–99
Hinds W C (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons, 1999
Hirsch T, Hubert H, Fischer S, Lahmer A, Lehnhardt M, Steinau H U, Steinstraesser L, Seipp H M (2012). Bacterial burden in the operating room: Impact of airflow systems. American Journal of Infection Control, 40(7): e228–e232
Hoffman P N, Williams J, Stacey A, Bennett A M, Ridgway G L, Dobson C, Fraser I, Humphreys H (2002). Microbiological commissioning and monitoring of operating theatre suites. Journal of Hospital Infection, 52(1): 1–28
Hughes S P, Anderson F M (1999). Infection in the operating room. Journal of Bone and Joint Surgery. British Volume, 81-B(5): 754–755
Humbal C, Gautam S, Trivedi U (2018). A review on recent progress in observations, and health effects of bioaerosols. Environment International, 118: 189–193
Lidwell O M, Lowbury E J, Whyte W, Blowers R, Stanley S J, Lowe D (1983). Airborne contamination of wounds in joint replacement operations: the relationship to sepsis rates. Journal of Hospital Infection, 4(2): 111–131
de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn B B (2009). Surgical site infection: Incidence and impact on hospital utilization and treatment costs. American Journal of Infection Control, 37(5): 387–397
Liu J, Wang H, Wen W (2009). Numerical simulation on a horizontal airflow for airborne particles control in hospital operating room. Building and Environment, 44(11): 2284–2289
Memarzadeh F, Manning A P (2002). Comparison of operating room ventilation systems in the protection of the surgical site/discussion. ASHRAE Transactions, 108(2): 3–15
Memarzadeh F, Manning A P (2003). Reducing risks of surgery. ASHRAE Journal, 45: 28–33
Noble W C (1975). Dispersal of skin microorganisms. British Journal of Dermatology, 93(4): 477–485
Noble W C, Lidwell O M, Kingston D (1963). The size distribution of airborne particles carrying micro-organisms. Epidemiology and Infection, 61(4): 385–391
Oguz R, Diab-Elschahawi M, Berger J, Auer N, Chiari A, Assadian O, Kimberger O (2017). Airborne bacterial contamination during orthopedic surgery: A randomized controlled pilot trial. Journal of Clinical Anesthesia, 38: 160–164
Reponen T, Nevalainen A, Raunemaa T (1989). Bioaerosol and particle mass levels and ventilation in Finnish homes. Environment International, 15(1–6): 203–208
Romano F, Marocco L, Gustén J, Joppolo C M (2015). Numerical and experimental analysis of airborne particles control in an operating theater. Building and Environment, 89: 369–379
Rui Z, Guangbei T, Jihong L (2008). Study on biological contaminant control strategies under different ventilation models in hospital operating room. Building and Environment, 43(5): 793–803
Sadrizadeh S, Afshari A, Karimipanah T, Håkansson U, Nielsen P V (2016). Numerical simulation of the impact of surgeon posture on airborne particle distribution in a turbulent mixing operating theatre. Building and Environment, 110: 140–147
Sadrizadeh S, Holmberg S, Tammelin A (2014b). A numerical investigation of vertical and horizontal laminar airflow ventilation in an operating room. Building and Environment, 82: 517–525
Sadrizadeh S, Tammelin A, Ekolind P, Holmberg S (2014a). Influence of staff number and internal constellation on surgical site infection in an operating room. Particuology, 13: 42–51
Skaaret E (1986). Contaminant removal performance in terms of ventilation effectiveness. Environment International, 12(1–4): 419–427
Stacey A, Humphreys H (2002). A UK historical perspective on operating theatre ventilation. Journal of Hospital Infection, 52(2): 77–80
Tammelin A, Ljungqvist B, Reinmüller B (2012). Comparison of three distinct surgical clothing systems for protection from air-borne bacteria: A prospective observational study. Patient Safety in Surgery, 6(1): 23–28
Tammelin A, Ljungqvist B, Reinmüller B (2013). Single-use surgical clothing system for reduction of airborne bacteria in the operating room. Journal of Hospital Infection, 84(3): 245–247
Wang C, Holmberg S, Sadrizadeh S (2018). Numerical study of temperature-controlled airflow in comparison with turbulent mixing and laminar airflow for operating room ventilation. Building and Environment, 144: 45–56
Woods J E, Braymen D T, Rasmussen R W, Reynolds P E, Montag G M (1986). Ventilation requirements in hospital operating rooms—Part I: Control of airborne particles. ASHRAE Transactions, 92(2): 396–426
Yang C, Yang X, Zhao B (2015). The ventilation needed to control thermal plume and particle dispersion from manikins in a unidirectional ventilated protective isolation room. Building Simulation, 8(5): 551–565