Ngăn ngừa nhiễm trùng vết mổ dưới các hệ thống thông gió khác nhau trong môi trường phòng mổ

Zhijian Liu1, Haiyang Liu1, Hang Yin2, Rui Rong1, Guoqing Cao3, Qihong Deng4
1Department of Power Engineering, North China Electric Power University, Baoding, China
2Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
3Institute of Building Environment and Energy, China Academy of Building Research, Beijing, China
4School of Energy Science and Engineering, Central South University, Changsha, China

Tóm tắt

Các hạt sinh học trong môi trường không khí phòng mổ (OR) có thể gây ra nhiễm trùng vết mổ (SSI). Nhiều hệ thống thông gió đã được sử dụng trong phòng mổ để đảm bảo một môi trường cực sạch. Tuy nhiên, tác động của các hệ thống thông gió khác nhau đến việc kiểm soát các hạt mang vi khuẩn (BCP) được phát tán từ đội ngũ phẫu thuật trong quá trình phẫu thuật vẫn chưa rõ ràng. Trong nghiên cứu này, hiệu suất của bốn hệ thống thông gió khác nhau (thông gió luồng không khí laminar dọc (VLAF), thông gió luồng không khí laminar ngang (HLAF), thông gió luồng không khí dọc chênh lệch (DVAF) và thông gió luồng không khí kiểm soát nhiệt độ (TAF)) được đánh giá và so sánh dựa trên nồng độ BCP không gian. Trường dòng khí trong phòng mổ được giải quyết bằng mô hình turbulence k-ε của Nhóm Chuẩn hóa (RNG), và pha BCP được tính toán bằng phương pháp theo dõi hạt Lagrangian (LPT) và mô hình đi bộ ngẫu nhiên rời rạc (DRW). Kết quả cho thấy hệ thống TAF là hệ thống thông gió hiệu quả nhất trong bốn hệ thống để đảm bảo độ sạch của không khí tại khu vực phẫu thuật. Nghiên cứu này cũng chỉ ra rằng độ sạch của không khí trong khu vực phẫu thuật không chỉ phụ thuộc vào lưu lượng không khí của hệ thống thông gió mà còn vào sự phân bố dòng khí, điều này bị ảnh hưởng lớn bởi các vật cản như đèn phẫu thuật và đội ngũ phẫu thuật.

Từ khóa

#nhiễm trùng vết mổ #hệ thống thông gió #phòng mổ #hạt mang vi khuẩn #độ sạch không khí

Tài liệu tham khảo

Ahl T, Dalen N, Jörbeck H, Hobom J (1995). Air contamination during hip and knee arthroplasties: horizontal laminar flow randomized vs. conventional ventilation. Acta Orthopaedica Scandinavica, 66(1): 17–20 Allegranzi B, Bischoff P, de Jonge S, Kubilay N Z, Zayed B, Gomes S M, Abbas M, Atema J J, Gans S, van Rijen M, Boermeester M A, Egger M, Kluytmans J, Pittet D, Solomkin J S. (2016). New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet. Infectious Diseases, 16(12): e276–e287 Alsved M, Civilis A, Ekolind P, Tammelin A, Andersson A E, Jakobsson J, Svensson T, Ramstorp M, Sadrizadeh S, Larsson P A, Bohgard M, Šantl-Temkiv T, Löndahl J (2018). Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow. Journal of Hospital Infection, 98(2): 181–190 Awad S S (2012). Adherence to surgical care improvement project measures and post-operative surgical site infections. Surgical Infections, 13(4): 234–237 Cao G, Storås M C, Aganovic A, Stenstad L I, Skogås J G (2018). Do surgeons and surgical facilities disturb the clean air distribution close to a surgical patient in an orthopedic operating room with laminar airflow?. American Journal of Infection Control, 46(10): 1115–1122 Chen F, Yu S C M, Lai A C K (2006). Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmospheric Environment, 40(2): 357–367 Chen Q (1995). Comparison of different k-ϵ models for indoor air flow computations. Numerical Heat Transfer, Part B: Fundamentals, 28(3): 353–369 Chow T T, Lin Z, Bai W (2006). The integrated effect of medical lamp position and diffuser discharge velocity on ultra-clean ventilation performance in an operating theatre. Indoor and Built Environment, 15(4): 315–331 Chow T T, Wang J (2012). Dynamic simulation on impact of surgeon bending movement on bacteria-carrying particles distribution in operating theatre. Building and Environment, 57: 68–80 Chow T T, Yang X Y (2003). Performance of ventilation system in a non-standard operating room. Building and Environment, 38(12): 1401–1411 Chow T T, Yang X Y (2004). Ventilation performance in operating theatres against airborne infection: review of research activities and practical guidance. Journal of Hospital Infection, 56(2): 85–92 Chow T T, Yang X Y (2005). Ventilation performance in the operating theatre against airborne infection: numerical study on an ultra-clean system. Journal of Hospital Infection, 59(2): 138–147 Diab-Elschahawi M, Berger J, Blacky A, Kimberger O, Oguz R, Kuelpmann R, Kramer A, Assadian O (2011). Impact of different-sized laminar air flow versus no laminar air flow on bacterial counts in the operating room during orthopedic surgery. American Journal of Infection Control, 39(7): e25–e29 Fischer S, Thieves M, Hirsch T, Fischer K D, Hubert H, Beppler S, Seipp H M. (2015). Reduction of airborne bacterial burden in the OR by installation of unidirectional displacement airflow (UDF) Systems. Medical Science Monitor, 21: 2367–2374 Friberg B, Friberg S (2005). Aerobiology in the operating room and its implications for working standards. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 219(2): 153–160 Gao R, Zhang H, Li A, Wen S, Du W, Deng B (2020). A new evaluation indicator of air distribution in buildings. Sustainable Cities and Society, 53: 101836 Hansen D, Krabs C, Benner D, Brauksiepe A, Popp W (2005). Laminar air flow provides high air quality in the operating field even during real operating conditions, but personal protection seems to be necessary in operations with tissue combustion. International Journal of Hygiene and Environmental Health, 208(6): 455–460 He C, Mackay I M, Ramsay K, Liang Z, Kidd T, Knibbs L D, Johnson G, McNeale D, Stockwell R, Coulthard M G, Long D G, Williams T J, Duchaine C, Smith N, Wainwright C, Morawska L (2017). Particle and bioaerosol characteristics in a paediatric intensive care unit. Environment International, 107: 89–99 Hinds W C (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. New York: John Wiley & Sons, 1999 Hirsch T, Hubert H, Fischer S, Lahmer A, Lehnhardt M, Steinau H U, Steinstraesser L, Seipp H M (2012). Bacterial burden in the operating room: Impact of airflow systems. American Journal of Infection Control, 40(7): e228–e232 Hoffman P N, Williams J, Stacey A, Bennett A M, Ridgway G L, Dobson C, Fraser I, Humphreys H (2002). Microbiological commissioning and monitoring of operating theatre suites. Journal of Hospital Infection, 52(1): 1–28 Hughes S P, Anderson F M (1999). Infection in the operating room. Journal of Bone and Joint Surgery. British Volume, 81-B(5): 754–755 Humbal C, Gautam S, Trivedi U (2018). A review on recent progress in observations, and health effects of bioaerosols. Environment International, 118: 189–193 Lidwell O M, Lowbury E J, Whyte W, Blowers R, Stanley S J, Lowe D (1983). Airborne contamination of wounds in joint replacement operations: the relationship to sepsis rates. Journal of Hospital Infection, 4(2): 111–131 de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn B B (2009). Surgical site infection: Incidence and impact on hospital utilization and treatment costs. American Journal of Infection Control, 37(5): 387–397 Liu J, Wang H, Wen W (2009). Numerical simulation on a horizontal airflow for airborne particles control in hospital operating room. Building and Environment, 44(11): 2284–2289 Memarzadeh F, Manning A P (2002). Comparison of operating room ventilation systems in the protection of the surgical site/discussion. ASHRAE Transactions, 108(2): 3–15 Memarzadeh F, Manning A P (2003). Reducing risks of surgery. ASHRAE Journal, 45: 28–33 Noble W C (1975). Dispersal of skin microorganisms. British Journal of Dermatology, 93(4): 477–485 Noble W C, Lidwell O M, Kingston D (1963). The size distribution of airborne particles carrying micro-organisms. Epidemiology and Infection, 61(4): 385–391 Oguz R, Diab-Elschahawi M, Berger J, Auer N, Chiari A, Assadian O, Kimberger O (2017). Airborne bacterial contamination during orthopedic surgery: A randomized controlled pilot trial. Journal of Clinical Anesthesia, 38: 160–164 Reponen T, Nevalainen A, Raunemaa T (1989). Bioaerosol and particle mass levels and ventilation in Finnish homes. Environment International, 15(1–6): 203–208 Romano F, Marocco L, Gustén J, Joppolo C M (2015). Numerical and experimental analysis of airborne particles control in an operating theater. Building and Environment, 89: 369–379 Rui Z, Guangbei T, Jihong L (2008). Study on biological contaminant control strategies under different ventilation models in hospital operating room. Building and Environment, 43(5): 793–803 Sadrizadeh S, Afshari A, Karimipanah T, Håkansson U, Nielsen P V (2016). Numerical simulation of the impact of surgeon posture on airborne particle distribution in a turbulent mixing operating theatre. Building and Environment, 110: 140–147 Sadrizadeh S, Holmberg S, Tammelin A (2014b). A numerical investigation of vertical and horizontal laminar airflow ventilation in an operating room. Building and Environment, 82: 517–525 Sadrizadeh S, Tammelin A, Ekolind P, Holmberg S (2014a). Influence of staff number and internal constellation on surgical site infection in an operating room. Particuology, 13: 42–51 Skaaret E (1986). Contaminant removal performance in terms of ventilation effectiveness. Environment International, 12(1–4): 419–427 Stacey A, Humphreys H (2002). A UK historical perspective on operating theatre ventilation. Journal of Hospital Infection, 52(2): 77–80 Tammelin A, Ljungqvist B, Reinmüller B (2012). Comparison of three distinct surgical clothing systems for protection from air-borne bacteria: A prospective observational study. Patient Safety in Surgery, 6(1): 23–28 Tammelin A, Ljungqvist B, Reinmüller B (2013). Single-use surgical clothing system for reduction of airborne bacteria in the operating room. Journal of Hospital Infection, 84(3): 245–247 Wang C, Holmberg S, Sadrizadeh S (2018). Numerical study of temperature-controlled airflow in comparison with turbulent mixing and laminar airflow for operating room ventilation. Building and Environment, 144: 45–56 Woods J E, Braymen D T, Rasmussen R W, Reynolds P E, Montag G M (1986). Ventilation requirements in hospital operating rooms—Part I: Control of airborne particles. ASHRAE Transactions, 92(2): 396–426 Yang C, Yang X, Zhao B (2015). The ventilation needed to control thermal plume and particle dispersion from manikins in a unidirectional ventilated protective isolation room. Building Simulation, 8(5): 551–565