Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors

Cell Reports Physical Science - Tập 2 Số 3 - Trang 100360 - 2021
Martin Pham1, John J. Darst2, William Q. Walker2, Thomas M. M. Heenan3,1, Drasti Patel1, Francesco Iacoviello1, Alexander Rack4, Margie P. Olbinado4, Gareth Hinds5, Dan J. L. Brett3,1, Eric Darcy2, Donal P. Finegan6, Paul R. Shearing3,1
1UCL - University College of London [London] (Gower Street, London WC1E 6BT - United Kingdom)
2JSC - NASA Johnson Space Center (NASA, Parkway Houston, Texas 77058 - United States)
3Harwell Science and Innovation Campus [Didcot, UK] (United Kingdom)
4ESRF - European Synchrotron Radiation Facility [Grenoble] (71, avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9 - France)
5NPL - National Physical Laboratory [Teddington] (Hampton Road, Teddington Middlesex TW11 0LW UK - United Kingdom)
6NREL - National Renewable Energy Laboratory (Golden, Colorado 80401 - United States)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zaghib, 2011, Safe and fast-charging Li-ion battery with long shelf life for power applications, J. Power Sources, 196, 3949, 10.1016/j.jpowsour.2010.11.093

Fan, 2004, Studies of 18650 cylindrical cells made with doped linio2 positive electrodes for military applications, J. Power Sources, 138, 288, 10.1016/j.jpowsour.2004.06.010

Larcher, 2015, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7, 19, 10.1038/nchem.2085

Feng, 2018, Thermal runaway mechanism of lithium ion battery for electric vehicles: a review, Energy Storage Mater., 10, 246, 10.1016/j.ensm.2017.05.013

Williard, 2013, Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability, Energies, 6, 4682, 10.3390/en6094682

Liu, 2020, Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review, Energy Storage Mater., 24, 85, 10.1016/j.ensm.2019.06.036

Lu, 2016, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16, 4431, 10.1021/acs.nanolett.6b01581

Myung, 2011, Electrochemical behavior and passivation of current collectors in lithium-ion batteries, J. Mater. Chem., 21, 9891, 10.1039/c0jm04353b

Chen, 2011, Multi-scale study of thermal stability of lithiated graphite, Energy Environ. Sci., 4, 4023, 10.1039/c1ee01786a

Lopez, 2015, Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules, J. Electrochem. Soc., 162, A1905, 10.1149/2.0921509jes

Feng, 2014, Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry, J. Power Sources, 255, 294, 10.1016/j.jpowsour.2014.01.005

Zheng, 2018, Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries, J. Power Sources, 378, 527, 10.1016/j.jpowsour.2017.12.050

Fu, 2015, An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter, J. Power Sources, 273, 216, 10.1016/j.jpowsour.2014.09.039

Wang, 2012, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210, 10.1016/j.jpowsour.2012.02.038

Bandhauer, 2011, A Critical Review of Thermal Issues in Lithium-Ion Batteries, J. Electrochem. Soc., 158, R1, 10.1149/1.3515880

Spotnitz, 2003, Abuse behavior of high-power, lithium-ion cells, J. Power Sources, 113, 81, 10.1016/S0378-7753(02)00488-3

Pham, 2020, Correlative acoustic time-of-flight spectroscopy and X-ray imaging to investigate gas-induced delamination in lithium-ion pouch cells during thermal runaway, J. Power Sources, 470, 228039, 10.1016/j.jpowsour.2020.228039

Walker, 2019, Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods, J. Power Sources, 415, 207, 10.1016/j.jpowsour.2018.10.099

Robinson, 2014, Non-uniform temperature distribution in Li-ion batteries during discharge - a combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach, J. Power Sources, 252, 51, 10.1016/j.jpowsour.2013.11.059

Hausbrand, 2015, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: methodology, insights and novel approaches, Mater. Sci. Eng. B, 192, 3, 10.1016/j.mseb.2014.11.014

Sharma, 2010, Structural changes in a commercial lithium-ion battery during electrochemical cycling: an in situ neutron diffraction study, J. Power Sources, 195, 8258, 10.1016/j.jpowsour.2010.06.114

Waag, 2013, Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application, Appl. Energy, 102, 885, 10.1016/j.apenergy.2012.09.030

Ren, 2017, An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery, J. Power Sources, 364, 328, 10.1016/j.jpowsour.2017.08.035

Yokoshima, 2018, Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test, J. Power Sources, 393, 67, 10.1016/j.jpowsour.2018.04.092

Yokoshima, 2019, Operando analysis of thermal runaway in lithium ion battery during nail-penetration test using an X-ray inspection system, J. Electrochem. Soc., 166, A1243, 10.1149/2.0701906jes

Finegan, 2017, Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells, J. Electrochem. Soc., 164, A3285, 10.1149/2.1501713jes

Finegan, 2015, In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nat. Commun., 6, 6924, 10.1038/ncomms7924

Finegan, 2017, Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits, Energy Environ. Sci., 10, 1377, 10.1039/C7EE00385D

Finegan, 2019, Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells, J. Power Sources, 417, 29, 10.1016/j.jpowsour.2019.01.077

Hatchard, 2014, Building a “smart nail” for penetration tests on Li-ion cells, J. Power Sources, 247, 821, 10.1016/j.jpowsour.2013.09.022

Ci, 2016, Reconfigurable Battery Techniques and Systems: A Survey, IEEE Access, 4, 1175, 10.1109/ACCESS.2016.2545338

Hendricks, 2015, A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries, J. Power Sources, 297, 113, 10.1016/j.jpowsour.2015.07.100

Liao, 2019, A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries, J. Power Sources, 436, 226879, 10.1016/j.jpowsour.2019.226879

Spielbauer, 2019, Experimental study of the impedance behavior of 18650 lithium-ion battery cells under deforming mechanical abuse, J. Energy Storage, 26, 101039, 10.1016/j.est.2019.101039

Chiu, 2014, An electrochemical modeling of lithium-ion battery nail penetration, J. Power Sources, 251, 254, 10.1016/j.jpowsour.2013.11.069

Lamb, 2014, Evaluation of mechanical abuse techniques in lithium ion batteries, J. Power Sources, 247, 189, 10.1016/j.jpowsour.2013.08.066

Mao, 2018, Failure mechanism of the lithium ion battery during nail penetration, Int. J. Heat Mass Transf., 122, 1103, 10.1016/j.ijheatmasstransfer.2018.02.036

Naguib, 2018, Limiting Internal Short-Circuit Damage by Electrode Partition for Impact-Tolerant Li-Ion Batteries, Joule, 2, 155, 10.1016/j.joule.2017.11.003

Liu, 2017

Finegan, 2016, Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study, Phys. Chem. Chem. Phys., 18, 30912, 10.1039/C6CP04251A

Li, 2018, Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation, J. Power Sources, 384, 408, 10.1016/j.jpowsour.2018.02.086

Zhang, 2007, A review on the separators of liquid electrolyte Li-ion batteries, J. Power Sources, 164, 351, 10.1016/j.jpowsour.2006.10.065

Lee, 2014, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857, 10.1039/C4EE01432D

Lagadec, 2019, Characterization and performance evaluation of lithium-ion battery separators, Nat. Energy, 4, 16, 10.1038/s41560-018-0295-9

Gelb, 2017, Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy, J. Power Sources, 357, 77, 10.1016/j.jpowsour.2017.04.102

Merkle, 2013, The Ascent of 3D X-ray Microscopy in the Laboratory, Micros. Today, 21, 10, 10.1017/S1551929513000060

Feser, 2008, Sub-micron resolution CT for failure analysis and process development, Meas. Sci. Technol., 19, 094001, 10.1088/0957-0233/19/9/094001

Burnett, 2014, Correlative tomography, Sci. Rep., 4, 4711, 10.1038/srep04711