Preventing childhood and lifelong disability: Maternal dietary supplementation for perinatal brain injury
Tài liệu tham khảo
Jensen, 2003, Perinatal brain damage--from pathophysiology to prevention, Eur. J. Obstet. Gynecol. Reprod. Biol., 110, S70, 10.1016/S0301-2115(03)00175-1
Vexler, 2001, Molecular and biochemical mechanisms of perinatal brain injury, Semin. Neonatol. SN, 6, 99, 10.1053/siny.2001.0041
Novak, 2012, Clinical prognostic messages from a systematic review on cerebral palsy, Pediatrics, 130, e1285, 10.1542/peds.2012-0924
Bax, 2005, Proposed definition and classification of cerebral palsy, April 2005, Dev. Med. Child. Neurol., 47, 571, 10.1017/S001216220500112X
Rosenbaum, 2007, A report: the definition and classification of cerebral palsy April 2006, Dev. Med. Child. Neurol., 8
Shevell, 2009, The relationship of cerebral palsy subtype and functional motor impairment: a population-based study, Dev. Med. Child. Neurol., 51, 872, 10.1111/j.1469-8749.2009.03269.x
Shevell, 2009, Comorbidities in cerebral palsy and their relationship to neurologic subtype and GMFCS level, Neurology, 72, 2090, 10.1212/WNL.0b013e3181aa537b
Kerr Graham, 2003, Musculoskeletal aspects of cerebral palsy, J. Bone Jt. Surg. Br., 85, 157, 10.1302/0301-620X.85B2.14066
Blair, 2006, Epidemiology of cerebral palsy, Semin. Fetal. Neonatal Med., 11, 117, 10.1016/j.siny.2005.10.010
Robertson, 2007, Changes in the prevalence of cerebral palsy for children born very prematurely within a population-based program over 30 years, JAMA, 297, 2733, 10.1001/jama.297.24.2733
Surman, 2009, Children with cerebral palsy: severity and trends over time, Paediatr. Perinat. Epidemiol., 23, 513, 10.1111/j.1365-3016.2009.01060.x
Clark, 1989, Disability in adulthood: Ten-year follow-up of Young people with disabilities, Disabil. Handicap Soc., 4, 271, 10.1080/02674648966780291
Fuhrer, 1994, Subjective well-being: implications for medical rehabilitation outcomes and models of disablement, Am. J. Phys. Med. Rehabil., 73, 358, 10.1097/00002060-199409000-00010
Cadman, 1987, Chronic illness, disability, and mental and social well-being: findings of the Ontario child health study, Pediatrics, 79, 805, 10.1542/peds.79.5.805
Cadman, 1991, Children with chronic illness: family and parent demographic characteristics and psychosocial adjustment, Pediatrics, 87, 884, 10.1542/peds.87.6.884
Kruse, 2009, Lifetime costs of cerebral palsy, Dev. Med. Child. Neurol., 51, 622, 10.1111/j.1469-8749.2008.03190.x
Canada, 2004
Barker, 1990, Fetal and placental size and risk of hypertension in adult life, BMJ, 301, 259, 10.1136/bmj.301.6746.259
Crescenti, 2015, Grape seed procyanidins administered at physiological doses to rats during pregnancy and lactation promote lipid oxidation and up-regulate AMPK in the muscle of male offspring in adulthood, J. Nutr. Biochem., 26, 912, 10.1016/j.jnutbio.2015.03.003
Fall, 1992, Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease, BMJ, 304, 801, 10.1136/bmj.304.6830.801
Gluckman, 2004, Living with the past: evolution, development, and patterns of disease, Science, 305, 1733, 10.1126/science.1095292
Hales, 1991, Fetal and infant growth and impaired glucose tolerance at age 64, BMJ, 303, 1019, 10.1136/bmj.303.6809.1019
Jiménez-Chillarón, 2012, The role of nutrition on epigenetic modifications and their implications on health, Biochimie, 94, 2242, 10.1016/j.biochi.2012.06.012
Segovia, 2014, Maternal obesity, inflammation, and developmental programming, Biomed Res. Int., 10.1155/2014/418975
Barker, 1986, Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales, Lancet Lond. Engl., 1, 1077, 10.1016/S0140-6736(86)91340-1
de Boo, 2006, The developmental origins of adult disease (barker) hypothesis, Aust. N. Z. J. Obstet. Gynaecol., 46, 4, 10.1111/j.1479-828X.2006.00506.x
O’Donnell, 2017, Fetal origins of mental health: the developmental origins of health and disease hypothesis, Am. J. Psychiatry, 174, 319, 10.1176/appi.ajp.2016.16020138
Badawi, 1998, Antepartum risk factors for newborn encephalopathy: the Western Australian case-control study, BMJ, 317, 1549, 10.1136/bmj.317.7172.1549
Nelson, 1988, What proportion of cerebral palsy is related to birth asphyxia?, J. Pediatr., 112, 572, 10.1016/S0022-3476(88)80169-0
Nelson, 1985, Antecedents of cerebral palsy. I. Univariate analysis of risks, Am. J. Dis. Child. 1960, 139, 1031, 10.1001/archpedi.1985.02140120077032
Nelson, 1986, Antecedents of cerebral palsy. Multivariate analysis of risk, N. Engl. J. Med., 315, 81, 10.1056/NEJM198607103150202
Dickinson, 2014, Creatine for women in pregnancy for neuroprotection of the fetus, Cochrane Database Syst. Rev., CD010846
Dilenge, 2001, Long-term developmental outcome of asphyxiated term neonates, J. Child. Neurol., 16, 781, 10.1177/08830738010160110201
Lou, 1994, Hypoxic-hemodynamic pathogenesis of brain lesions in the newborn, Brain Dev., 16, 423, 10.1016/0387-7604(94)90001-9
McIntyre, 2013, A systematic review of risk factors for cerebral palsy in children born at term in developed countries, Dev. Med. Child. Neurol., 55, 499, 10.1111/dmcn.12017
du Plessis, 2002, Perinatal brain injury in the preterm and term newborn, Curr. Opin. Neurol., 15, 151, 10.1097/00019052-200204000-00005
Rees, 2011, The biological basis of injury and neuroprotection in the fetal and neonatal brain, Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci., 29, 551, 10.1016/j.ijdevneu.2011.04.004
Volpe, 2001, Perinatal brain injury: from pathogenesis to neuroprotection, Ment. Retard. Dev. Disabil. Res. Rev., 7, 56, 10.1002/1098-2779(200102)7:1<56::AID-MRDD1008>3.0.CO;2-A
Grether, 2003, Intrauterine exposure to infection and risk of cerebral palsy in very preterm infants, Arch. Pediatr. Adolesc. Med., 157, 26, 10.1001/archpedi.157.1.26
Nelson, 2000, Infection, inflammation and the risk of cerebral palsy, Curr. Opin. Neurol., 13, 133, 10.1097/00019052-200004000-00004
Nelson, 1998, Neonatal cytokines and coagulation factors in children with cerebral palsy, Ann. Neurol., 44, 665, 10.1002/ana.410440413
Nelson, 2003, Neonatal cytokines and cerebral palsy in very preterm infants, Pediatr. Res., 53, 600, 10.1203/01.PDR.0000056802.22454.AB
Mednick, 1988, Adult schizophrenia following prenatal exposure to an influenza epidemic, Arch. Gen. Psychiatry, 45, 189, 10.1001/archpsyc.1988.01800260109013
Meyer, 2006, The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology, J. Neurosci. Off. J. Soc. Neurosci., 26, 4752, 10.1523/JNEUROSCI.0099-06.2006
Garite, 2004, Intrauterine growth restriction increases morbidity and mortality among premature neonates, Am. J. Obstet. Gynecol., 191, 481, 10.1016/j.ajog.2004.01.036
Lin, 1998, Current concepts of fetal growth restriction: part I. Causes, classification, and pathophysiology, Obstet. Gynecol., 92, 1044
Mittendorf, 2003, Components of the systemic fetal inflammatory response syndrome as predictors of impaired neurologic outcomes in children, Am. J. Obstet. Gynecol., 188, 10.1067/mob.2003.380
Dammann, 2000, Placental cytokine expression in preterm labour and the fetal inflammatory response, Cytokine, 12, 176, 10.1006/cyto.1999.0532
Eide, 2013, Degree of fetal growth restriction associated with schizophrenia risk in a national cohort, Psychol. Med., 43, 2057, 10.1017/S003329171200267X
Morgane, 2002, Effects of prenatal protein malnutrition on the hippocampal formation, Neurosci. Biobehav. Rev., 26, 471, 10.1016/S0149-7634(02)00012-X
Smith, 2001, Low birthweight in schizophrenia: prematurity or poor fetal growth?, Schizophr. Res., 47, 177, 10.1016/S0920-9964(00)00004-9
Nilsson, 2005, Fetal growth restriction and schizophrenia: a Swedish twin study, Twin Res. Hum. Genet. Off. J. Int. Soc. Twin Stud., 8, 402, 10.1375/twin.8.4.402
Brown, 2004, Serologic evidence of prenatal influenza in the etiology of schizophrenia, Arch. Gen. Psychiatry, 61, 774, 10.1001/archpsyc.61.8.774
O’Callaghan, 1994, The relationship of schizophrenic births to 16 infectious diseases, Br. J. Psychiatry, 165, 353, 10.1192/bjp.165.3.353
Wheater, 2000, Perinatal infection is an important risk factor for cerebral palsy in very-low-birthweight infants, Dev. Med. Child. Neurol., 42, 364, 10.1017/S0012162200000670
Bear, 2016, Maternal infections during pregnancy and cerebral palsy in the child, Pediatr. Neurol., 57, 74, 10.1016/j.pediatrneurol.2015.12.018
Miller, 2005, Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review, Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci., 23, 201, 10.1016/j.ijdevneu.2004.06.007
Rodier, 1998, Early environmental factors in autism, Ment. Retard. Dev. Disabil. Res. Rev., 4, 121, 10.1002/(SICI)1098-2779(1998)4:2<121::AID-MRDD9>3.0.CO;2-S
Rantakallio, 1985, Risk factors for mental retardation, Arch. Dis. Child., 60, 946, 10.1136/adc.60.10.946
Revello, 2004, Pathogenesis and prenatal diagnosis of human cytomegalovirus infection, J. Clin. Virol., 29, 71, 10.1016/j.jcv.2003.09.012
Strickland, 2014, Prevention of cerebral palsy, autism spectrum disorder, and attention deficit-hyperactivity disorder, Med. Hypotheses, 82, 522, 10.1016/j.mehy.2014.02.003
Zuckerman, 2003, Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol., 28, 1778, 10.1038/sj.npp.1300248
Lou, 1996, Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy, Acta Paediatr. Oslo Nor. 1992, 85, 1266
Christensen, 2014, Prevalence of cerebral palsy, co-occurring autism spectrum disorders, and motor functioning - autism and developmental disabilities monitoring network, USA, 2008, Dev. Med. Child. Neurol., 56, 59, 10.1111/dmcn.12268
Matson, 2015
Bjorgaas, 2012, Psychiatric disorders among children with cerebral palsy at school starting age, Res. Dev. Disabil., 33, 1287, 10.1016/j.ridd.2012.02.024
Langevin, 2014, Common white matter microstructure alterations in pediatric motor and attention disorders, J. Pediatr., 164, 1157, 10.1016/j.jpeds.2014.01.018
Lawrence, 2013, White matter microstructure in subjects with attention-deficit/hyperactivity disorder and their siblings, J. Am. Acad. Child. Adolesc. Psychiatry, 52, 431, 10.1016/j.jaac.2013.01.010
2013
Himmelmann, 2009, Dyskinetic cerebral palsy in Europe: trends in prevalence and severity, Arch. Dis. Child., 94, 921, 10.1136/adc.2008.144014
Pharoah, 1996, The changing epidemiology of cerebral palsy, Arch. Dis. Child. Fetal Neonatal Ed., 75, F169, 10.1136/fn.75.3.F169
Kim, 2013, Cost-effective therapeutic hypothermia treatment device for hypoxic ischemic encephalopathy, Med. Devices Auckl. NZ, 6, 1
Nguyen, 2013, Evidence for therapeutic intervention in the prevention of cerebral palsy: Hope from animal model research, Semin. Pediatr. Neurol., 20, 75, 10.1016/j.spen.2013.06.010
Hoehn, 2008, Therapeutic hypothermia in neonates. Review of current clinical data, ILCOR recommendations and suggestions for implementation in neonatal intensive care units, Resuscitation, 78, 7, 10.1016/j.resuscitation.2008.04.027
Lachmann, 2012, The penumbra of thalidomide, the litigation culture and the licensing of pharmaceuticals, QJM Int. J. Med., 105, 1179, 10.1093/qjmed/hcs148
Bittigau, 2003, Antiepileptic drugs and apoptosis in the developing brain, Ann. N. Y. Acad. Sci., 993, 103, 10.1111/j.1749-6632.2003.tb07517.x
Gressens, 2002, The impact of neonatal intensive care practices on the developing brain, J. Pediatr., 140, 646, 10.1067/mpd.2002.123214
Ikonomidou, 2002, Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?, Lancet Neurol., 1, 383, 10.1016/S1474-4422(02)00164-3
Ikonomidou, 2001, Neurotransmitters and apoptosis in the developing brain, Biochem. Pharmacol., 62, 401, 10.1016/S0006-2952(01)00696-7
Olney, 2002, Drug-induced apoptotic neurodegeneration in the developing brain, Brain Pathol. Zurich Switz., 12, 488, 10.1111/j.1750-3639.2002.tb00467.x
Olney, 2004, Anesthesia-induced developmental NeuroapoptosisDoes It happen in humans?, Anesthesiol. J. Am. Soc. Anesthesiol., 101, 273
Olney, 2004, Do pediatric drugs cause developing neurons to commit suicide?, Trends Pharmacol. Sci., 25, 135, 10.1016/j.tips.2004.01.002
Ikonomidou, 1999, Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain, Science, 283, 70, 10.1126/science.283.5398.70
Pohl, 1999, N-methyl-d-aspartate antagonists and apoptotic cell death triggered by head trauma in developing rat brain, Proc. Natl. Acad. Sci. U. S. A., 96, 2508, 10.1073/pnas.96.5.2508
Vonder Haar, 2016, Vitamins and nutrients as primary treatments in experimental brain injury: clinical implications for nutraceutical therapies, Brain Res., 1640, 114, 10.1016/j.brainres.2015.12.030
Manolio, 2009, Finding the missing heritability of complex diseases, Nature, 461, 747, 10.1038/nature08494
Faa, 2016, Fetal programming of neuropsychiatric disorders, Birth Defects Res. Part. C Embryo Today Rev., 108, 207, 10.1002/bdrc.21139
Olney, 2002, New insights and New issues in developmental neurotoxicology, NeuroToxicology, 23, 659, 10.1016/S0161-813X(01)00092-4
Back, 1998, Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion, J. Neurosci. Off. J. Soc. Neurosci., 18, 6241, 10.1523/JNEUROSCI.18-16-06241.1998
Mattson, 2000, Apoptotic and antiapoptotic mechanisms in stroke, Cell. Tissue Res., 301, 173, 10.1007/s004419900154
Vannucci, 1990, Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage, Pediatr. Res., 27, 317, 10.1203/00006450-199004000-00001
Grow, 2002, Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts, Clin. Perinatol., 29, 585, 10.1016/S0095-5108(02)00059-3
Vannucci, 1993, Mechanisms of perinatal hypoxic-ischemic brain damage, Semin. Perinatol., 17, 330
Choi, 1988, Glutamate neurotoxicity and diseases of the nervous system, Neuron, 1, 623, 10.1016/0896-6273(88)90162-6
Choi, 1990, The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death, Annu. Rev. Neurosci., 13, 171, 10.1146/annurev.ne.13.030190.001131
Rothman, 1986, Glutamate and the pathophysiology of hypoxic--ischemic brain damage, Ann. Neurol., 19, 105, 10.1002/ana.410190202
Iadecola, 1997, Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene, J. Neurosci. Off. J. Soc. Neurosci., 17, 9157, 10.1523/JNEUROSCI.17-23-09157.1997
Lafemina, 2006, Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain, Pediatr. Res., 59, 680, 10.1203/01.pdr.0000214891.35363.6a
Pacher, 2007, Nitric oxide and peroxynitrite in health and disease, Physiol. Rev., 87, 315, 10.1152/physrev.00029.2006
Tsuji, 2000, Protective effect of aminoguanidine on hypoxic-ischemic brain damage and temporal profile of brain nitric oxide in neonatal rat, Pediatr. Res., 47, 79, 10.1203/00006450-200001000-00015
Ferdinandy, 2003, Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning, Br. J. Pharmacol., 138, 532, 10.1038/sj.bjp.0705080
Warner, 2004, Oxidants, antioxidants and the ischemic brain, J. Exp. Biol., 207, 3221, 10.1242/jeb.01022
Charriaut-Marlangue, 1996, Is ischemic cell death of the apoptotic type?, Adv. Neurol., 71, 425
Buonocore, 2001, Free radicals and brain damage in the newborn, Biol. Neonate, 79, 180, 10.1159/000047088
Kadhim, 2001, Inflammatory cytokines in the pathogenesis of periventricular leukomalacia, Neurology, 56, 1278, 10.1212/WNL.56.10.1278
Bona, 1999, Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats, Pediatr. Res., 45, 500, 10.1203/00006450-199904010-00008
Eldadah, 2000, Caspase pathways, neuronal apoptosis, and CNS injury, J. Neurotrauma, 17, 811, 10.1089/neu.2000.17.811
Hill, 1995, DNA fragmentation indicative of apoptosis following unilateral cerebral hypoxia-ischemia in the neonatal rat, Brain Res., 676, 398, 10.1016/0006-8993(95)00145-G
Kadhim, 2002, Immune mechanisms in the pathogenesis of cerebral palsy: implication of proinflammatory cytokines and T lymphocytes, Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc., 6, 139, 10.1053/ejpn.2002.0581
Kadhim, 2003, Cytokine immunoreactivity in cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy?, Acta Neuropathol. (Berl.), 105, 209, 10.1007/s00401-002-0633-6
MacManus, 1997, Gene expression induced by cerebral ischemia: an apoptotic perspective, J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab., 17, 815, 10.1038/aj.jcbfm.9590266
Portera-Cailliau, 1997, Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum, J. Comp. Neurol., 378, 70
del Zoppo, 2000, Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia, Brain Pathol. Zurich Switz., 10, 95, 10.1111/j.1750-3639.2000.tb00247.x
Kadhim, 2006, Molecular mechanisms of cell death in periventricular leukomalacia, Neurology, 67, 293, 10.1212/01.wnl.0000224754.63593.c4
Gilmore, 1997, Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia, Schizophr. Res., 24, 365, 10.1016/S0920-9964(96)00123-5
Buka, 2001, Maternal cytokine levels during pregnancy and adult psychosis, Brain. Behav. Immun., 15, 411, 10.1006/brbi.2001.0644
Pearce, 2001, Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms, Mol. Psychiatry, 6, 634, 10.1038/sj.mp.4000956
Dammann, 1997, Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn, Pediatr. Res., 42, 1, 10.1203/00006450-199707000-00001
Wu, 2000, Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis, JAMA, 284, 1417, 10.1001/jama.284.11.1417
Wu, 2002, Systematic review of chorioamnionitis and cerebral palsy, Ment. Retard. Dev. Disabil. Res. Rev., 8, 25, 10.1002/mrdd.10003
Mallard, 1999, Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia, Schizophr. Res., 40, 11, 10.1016/S0920-9964(99)00041-9
Salmaso, 2014, Neurobiology of premature brain injury, Nat. Neurosci., 17, 341, 10.1038/nn.3604
Van Erp, 2002, Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers, Am. J. Psychiatry, 159, 1514, 10.1176/appi.ajp.159.9.1514
Martinez-Biarge, 2010, Outcomes after central grey matter injury in term perinatal hypoxic-ischaemic encephalopathy, Early Hum. Dev., 86, 675, 10.1016/j.earlhumdev.2010.08.013
Walhovd, 2012, Long-term influence of normal variation in neonatal characteristics on human brain development, Proc. Natl. Acad. Sci., 109, 20089, 10.1073/pnas.1208180109
Lodygensky, 2008, Intrauterine growth restriction affects the preterm infant’s hippocampus, Pediatr. Res., 63, 438, 10.1203/PDR.0b013e318165c005
Dominguez-Salas, 2014, Maternal nutrition at conception modulates DNA methylation of human metastable epialleles, Nat. Commun., 5, 3746, 10.1038/ncomms4746
Euser, 2009, Magnesium sulfate for the treatment of eclampsia: a brief review, Stroke, 40, 1169, 10.1161/STROKEAHA.108.527788
Coudray, 2005, Study of magnesium bioavailability from ten organic and inorganic Mg salts in Mg-depleted rats using a stable isotope approach, Magnes. Res., 18, 215
Costantine, 2011, Antenatal exposure to magnesium sulfate and neuroprotection in preterm infants, Obstet. Gynecol. Clin. North. Am., 38, 351, 10.1016/j.ogc.2011.02.019
Marret, 2007, Antenatal magnesium sulphate neuroprotection in the preterm infant, Semin. Fetal. Neonatal Med., 12, 311, 10.1016/j.siny.2007.04.001
Stark, 2015, Effects of antenatal magnesium sulfate treatment for neonatal neuro-protection on cerebral oxygen kinetics, Pediatr. Res., 78, 310, 10.1038/pr.2015.96
Imamoglu, 2014, Effects of antenatal magnesium sulfate treatment on cerebral blood flow velocities in preterm neonates, J. Perinatol. Off. J. Calif. Perinat. Assoc., 34, 192, 10.1038/jp.2013.182
Shokry, 2010, Effects of antenatal magnesium sulfate therapy on cerebral and systemic hemodynamics in preterm newborns, Acta Obstet. Gynecol. Scand., 89, 801, 10.3109/00016341003739542
Macdonald, 2004, Magnesium and experimental vasospasm, J. Neurosurg., 100, 106, 10.3171/jns.2004.100.1.0106
Oddie, 2015, Antenatal magnesium sulfate: neuro-protection for preterm infants, Arch. Dis. Child. Fetal Neonatal Ed., 100, F553, 10.1136/archdischild-2014-307655
Doyle, 2009, Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus, Cochrane Database Syst. Rev., CD004661
Crowther, 2017, Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: an individual participant data meta-analysis, PLoS Med., 14, e1002398, 10.1371/journal.pmed.1002398
Marret, 2016, [Neuroprotection for preterm infants with antenatal magnesium sulphate], J. Gynecol. Obstet. Biol. Reprod. (Paris), 45, 1418, 10.1016/j.jgyn.2016.09.028
Morag, 2016, Short-term morbidities and neurodevelopmental outcomes in preterm infants exposed to magnesium sulphate treatment, J. Paediatr., 52, 397
Bain, 2013, Maternal adverse effects of different antenatal magnesium sulphate regimens for improving maternal and infant outcomes: a systematic review, BMC Pregnancy Childbirth, 13, 195, 10.1186/1471-2393-13-195
Murray, 2017, Long-term childhood outcomes after interventions for prevention and management of preterm birth, Semin. Perinatol., 41, 519, 10.1053/j.semperi.2017.08.011
Brosnan, 2011, The metabolic burden of creatine synthesis, Amino Acids, 40, 1325, 10.1007/s00726-011-0853-y
Brosnan, 2007, Creatine: endogenous metabolite, dietary, and therapeutic supplement, Annu. Rev. Nutr., 27, 241, 10.1146/annurev.nutr.27.061406.093621
Lawler, 2002, Direct antioxidant properties of creatine, Biochem. Biophys. Res. Commun., 290, 47, 10.1006/bbrc.2001.6164
Sestili, 2006, Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity, Free Radic. Biol. Med., 40, 837, 10.1016/j.freeradbiomed.2005.10.035
Bessman, 1985, The creatine-creatine phosphate energy shuttle, Annu. Rev. Biochem., 54, 831, 10.1146/annurev.bi.54.070185.004151
Wallimann, 1992, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis, Biochem. J., 281, 21, 10.1042/bj2810021
Prass, 2007, Improved reperfusion and neuroprotection by creatine in a mouse model of stroke, J. Cereb. Blood Flow. Metab. Off. J. Int. Soc. Cereb. Blood Flow. Metab., 27, 452, 10.1038/sj.jcbfm.9600351
Baharom, 2017, Does maternal-fetal transfer of creatine occur in pregnant sheep?, Am. J. Physiol.-Endocrinol. Metab., 313, E75, 10.1152/ajpendo.00450.2016
Miller, 1974, Transport of creatine in human placenta, The Pharmacologist, 16
Braissant, 2005, Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1, BMC Dev. Biol., 5, 9, 10.1186/1471-213X-5-9
Ireland, 2008, Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (acomys cahirinus)?, Am. J. Obstet. Gynecol., 198, 431, 10.1016/j.ajog.2007.10.790
LaRosa, 2016, Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: a study of structure and function of hind limb muscle in the spiny mouse, Pediatr. Res., 80, 852, 10.1038/pr.2016.153
Ireland, 2011, A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia, Neuroscience, 194, 372, 10.1016/j.neuroscience.2011.05.012
Dickinson, 2013, Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse, Reprod. Sci., 20, 1096, 10.1177/1933719113477478
Karalis, 2011, Resveratrol ameliorates hypoxia/ischemia-induced behavioral deficits and brain injury in the neonatal rat brain, Brain Res., 1425, 98, 10.1016/j.brainres.2011.09.044
Safwen, 2015, Protective effect of grape seed and skin extract on cerebral ischemia in rat: implication of transition metals, Int. J. Stroke Off. J. Int. Stroke Soc., 10, 415, 10.1111/ijs.12391
Li, 2012, Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bcl-2, Brain Res., 1450, 116, 10.1016/j.brainres.2012.02.019
Yousuf, 2009, Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia, Brain Res., 1250, 242, 10.1016/j.brainres.2008.10.068
Morin, 2003, Evidence for resveratrol-induced preservation of brain mitochondria functions after hypoxia-reoxygenation, Drugs Exp. Clin. Res., 29, 227
Moldzio, 2013, Protective effects of resveratrol on glutamate-induced damages in murine brain cultures, J. Neural Transm., 120, 1271, 10.1007/s00702-013-1000-6
Papoutsis, 2015, Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: preventive effects of resveratrol, Mol. Carcinog., 54, 261, 10.1002/mc.22095
Isac, 2017, Trans-resveratrol enriched maternal diet protects the immature hippocampus from perinatal asphyxia in rats, Neurosci. Lett., 1, 308, 10.1016/j.neulet.2017.06.003
Sahu, 2013, Neuroprotective effect of resveratrol against prenatal stress induced cognitive impairment and possible involvement of Na(+), K(+)-ATPase activity, Pharmacol. Biochem. Behav., 103, 520, 10.1016/j.pbb.2012.09.012
Madhyastha, 2014, Resveratrol for prenatal-stress-induced oxidative damage in growing brain and its consequences on survival of neurons, J. Basic., 25, 63
Madhyastha, 2013, Resveratrol improves postnatal hippocampal neurogenesis and brain derived neurotrophic factor in prenatally stressed rats, J. Dev. Neurosci., 31, 580, 10.1016/j.ijdevneu.2013.06.010
Reynolds, 2006, Evidence for altered placental blood flow and vascularity in compromised pregnancies, J. Physiol., 572, 51, 10.1113/jphysiol.2005.104430
Bourque, 2012, Maternal resveratrol treatment during pregnancy improves adverse fetal outcomes in a rat model of severe hypoxia, Placenta, 33, 449, 10.1016/j.placenta.2012.01.012
Williams, 2009, Safety studies conducted on high-purity trans-resveratrol in experimental animals, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc., 47, 2170, 10.1016/j.fct.2009.06.002
Henry, 2006, Effects of neonatal resveratrol exposure on adult male and female reproductive physiology and behavior, Dev. Neurosci., 28, 186, 10.1159/000091916
Freedman, 2015, Prenatal choline and the development of schizophrenia, Shanghai Arch. Psychiatry, 27, 90
Masih, 2015, Pregnant Canadian women achieve recommended intakes of one-carbon nutrients through prenatal supplementation but the supplement composition, including choline, requires reconsideration, J. Nutr., 145, 1824, 10.3945/jn.115.211300
Institute of Medicine (US), 1998
Zeisel, 2006, Choline: critical role during fetal development and dietary requirements in adults, Annu. Rev. Nutr., 26, 229, 10.1146/annurev.nutr.26.061505.111156
Zeisel, 2013, Nutrition in pregnancy: the argument for including a source of choline, J. Women, 193–199
Garner, 1995, Choline distribution and metabolism in pregnant rats and fetuses are influenced by the choline content of the maternal diet, J. Nutr., 125, 2851
Jiang, 2014, Maternal choline supplementation: a nutritional approach for improving offspring health?, Trends Endocrinol. Metab. TEM, 25, 263, 10.1016/j.tem.2014.02.001
Zeisel, 2006, The fetal origins of memory: the role of dietary choline in optimal brain development, J. Pediatr., 149, S131, 10.1016/j.jpeds.2006.06.065
Meck, 2003, Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan, Neurosci. Biobehav. Rev., 27, 385, 10.1016/S0149-7634(03)00069-1
Ross, 2013, Perinatal choline effects on neonatal pathophysiology related to later schizophrenia risk.[Erratum appears in Am J psychiatry. 2013 May 1;170(5):566], J. Psychiatry, 170, 290
Wu, 2015, The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring, Brain. Behav. Immun., 192, 10.1016/j.bbi.2015.02.005
Mellott, 2004, Prenatal choline supplementation advances hippocampal development and enhances MAPK and CREB activation, FASEB J., 18, 545, 10.1096/fj.03-0877fje
Davison, 2009, Gestational choline supply regulates methylation of histone H3, expression of histone methyltransferases G9a (Kmt1c) and Suv39h1 (Kmt1a), and DNA methylation of their genes in rat fetal liver and brain, J. Biol. Chem., 284, 1982, 10.1074/jbc.M807651200
McGee, 2018, A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes, Nutr. Rev., 76, 469, 10.1093/nutrit/nuy006
Mellott, 2007, Prenatal choline availability modulates hippocampal and cerebral cortical gene expression, FASEB J., 21, 1311, 10.1096/fj.06-6597com
Haselbacher, 1989, Long-term cultivation of cryopreserved human fetal brain cells in a chemically defined medium, J. Neurosci. Methods, 30, 121, 10.1016/0165-0270(89)90058-7
Knusel, 1991, Trophic actions of IGF-I, IGF-II and insulin on cholinergic and dopaminergic brain neurons, Adv. Exp. Med. Biol., 293, 351, 10.1007/978-1-4684-5949-4_31
Konishi, 1994, Insulin-like growth factor II promotes in vitro cholinergic development of mouse septal neurons: comparison with the effects of insulin-like growth factor I, Brain Res., 649, 53, 10.1016/0006-8993(94)91048-0
Lim, 1985, Mitogenic activity of glia maturation factor: interaction with insulin and insulin-like growth factor-II, Exp. Cell. Res., 159, 335, 10.1016/S0014-4827(85)80007-0
Napoli, 2008, Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and frontal cortex, Brain Res., 1237, 124, 10.1016/j.brainres.2008.08.046
Kwan, 2018, Maternal choline supplementation during Normal murine pregnancy alters the placental epigenome: results of an exploratory study, Nutrients, 10, 10.3390/nu10040417
Montoya, 2000, Prenatal choline supplementation alters hippocampal N-methyl-d-aspartate receptor-mediated neurotransmission in adult rats, Neurosci. Lett., 296, 85, 10.1016/S0304-3940(00)01660-8
Glenn, 2007, Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats, J. Neurosci., 25, 2473
Li, 2004, Dietary prenatal choline supplementation alters postnatal hippocampal structure and function, J. Neurophysiol., 91, 1545, 10.1152/jn.00785.2003
Montoya, 2000, Prenatal choline exposure alters hippocampal responsiveness to cholinergic stimulation in adulthood, Brain Res. Dev. Brain Res., 123, 25, 10.1016/S0165-3806(00)00075-4
Sandstrom, 2002, Prenatal choline supplementation increases NGF levels in the hippocampus and frontal cortex of young and adult rats, Brain Res., 947, 9, 10.1016/S0006-8993(02)02900-1
Jones, 1999, Choline availability to the developing rat fetus alters adult hippocampal long-term potentiation, Brain Res. Dev. Brain Res., 118, 159, 10.1016/S0165-3806(99)00103-0
Moreno, 2013, Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats, Nutr. Neurosci., 16, 269, 10.1179/1476830513Y.0000000055
Lamoureux, 2008, Prenatal choline availability alters the context sensitivity of pavlovian conditioning in adult rats, Learn. Mem., 15, 866, 10.1101/lm.1058708
Tees, 1999, The effects of neonatal choline dietary supplementation on adult spatial and configural learning and memory in rats, Dev. Psychobiol., 35, 226, 10.1002/(SICI)1098-2302(199911)35:3<226::AID-DEV7>3.0.CO;2-H
Wozniak, 2013, Choline supplementation in children with fetal alcohol spectrum disorders has high feasibility and tolerability, Nutr. Res., 33, 897, 10.1016/j.nutres.2013.08.005
Stevens, 2008, Permanent improvement in deficient sensory inhibition in DBA/2 mice with increased perinatal choline, Psychopharmacology (Berl.), 198, 413, 10.1007/s00213-008-1170-3
Guo-Ross, 2003, Prenatal dietary choline availability alters postnatal neurotoxic vulnerability in the adult rat, Neurosci. Lett., 341, 161, 10.1016/S0304-3940(03)00119-8
Wong-Goodrich, 2011, Water maze experience and prenatal choline supplementation differentially promote long-term hippocampal recovery from seizures in adulthood, Hippocampus, 21, 584, 10.1002/hipo.20783
Yang, 2000, Protective effects of prenatal choline supplementation on seizure-induced memory impairment, J. Neurosci., 20, 10.1523/JNEUROSCI.20-22-j0006.2000
Langley, 2015, High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety-like behaviors in the BTBR T+Itpr3tf/J mouse model of autism, Behav. Brain Res., 278, 210, 10.1016/j.bbr.2014.09.043
Boeke, 2013, Choline intake during pregnancy and child cognition at age 7 years, J. Epidemiol., 177, 1338, 10.1093/aje/kws395
Cheatham, 2012, Phosphatidylcholine supplementation in pregnant women consuming moderate-choline diets does not enhance infant cognitive function: a randomized, double-blind, placebo-controlled trial, J. Clin. Nutr., 96, 1465, 10.3945/ajcn.112.037184
Signore, 2008, Choline concentrations in human maternal and cord blood and intelligence at 5 y of age, Am. J. Clin. Nutr., 87, 896, 10.1093/ajcn/87.4.896
Strupp, 2016, Maternal choline supplementation: a potential prenatal treatment for down syndrome and alzheimer’s disease, Curr. Alzheimer Res., 13, 97, 10.2174/1567205012666150921100311
Cheung, 2003, The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion, J. Pineal Res., 34, 153, 10.1034/j.1600-079X.2003.00034.x
Claustrat, 2005, The basic physiology and pathophysiology of melatonin, Sleep. Med. Rev., 9, 11, 10.1016/j.smrv.2004.08.001
Okatani, 1998, Maternal-fetal transfer of melatonin in pregnant women near term, J. Pineal Res., 25, 129, 10.1111/j.1600-079X.1998.tb00550.x
Okatani, 2000, Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain, J. Pineal Res., 28, 89, 10.1034/j.1600-079X.2001.280204.x
Carloni, 2016, Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway, J. Pineal Res., 61, 370, 10.1111/jpi.12354
Chen, 2013, Roles of melatonin in fetal programming in compromised pregnancies, J. Mol. Sci., 14, 5380, 10.3390/ijms14035380
Korkmaz, 2008, Epigenetic regulation: a new research area for melatonin?, J. Pineal Res., 44, 41
Tain, 2014, Transcriptional regulation of programmed hypertension by melatonin: an epigenetic perspective, Int. J. Mol. Sci., 15, 18484, 10.3390/ijms151018484
Wu, 2014, Melatonin prevents neonatal dexamethasone induced programmed hypertension: histone deacetylase inhibition, J. Steroid Biochem. Mol. Biol., 144, 253, 10.1016/j.jsbmb.2014.07.008
Lui, 2015, Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels, Dev. Neurosci., 37, 105, 10.1159/000368768
Wakatsuki, 1999, Melatonin protects against ischemia and reperfusion-induced oxidative lipid and DNA damage in fetal rat brain, J. Pineal Res., 26, 147, 10.1111/j.1600-079X.1999.tb00576.x
Wakatsuki, 2001, Melatonin protects fetal rat brain against oxidative mitochondrial damage, J. Pineal Res., 30, 22, 10.1034/j.1600-079X.2001.300103.x
Watanabe, 2004, Maternally administered melatonin protects against ischemia and reperfusion-induced oxidative mitochondrial damage in premature fetal rat brain, J. Pineal Res., 37, 276, 10.1111/j.1600-079X.2004.00167.x
Nagai, 2008, Melatonin preserves fetal growth in rats by protecting against ischemia/reperfusion-induced oxidative/nitrosative mitochondrial damage in the placenta, J. Pineal Res., 45, 271, 10.1111/j.1600-079X.2008.00586.x
Watanabe, 2012, Prophylactic administration of melatonin to the mother throughout pregnancy can protect against oxidative cerebral damage in neonatal rats, J. Matern.-Fetal, 25, 1254, 10.3109/14767058.2011.636094
Yawno, 2012, Mechanisms of melatonin-induced protection in the brain of late gestation fetal sheep in response to hypoxia, Dev. Neurosci., 34, 543, 10.1159/000346323
Miller, 2005, Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion, Dev. Neurosci., 27, 200, 10.1159/000085993
Xu, 2007, Maternally administered melatonin differentially regulates lipopolysaccharide-induced proinflammatory and anti-inflammatory cytokines in maternal serum, amniotic fluid, fetal liver, and fetal brain, J. Pineal Res., 43, 74, 10.1111/j.1600-079X.2007.00445.x
Domínguez Rubio, 2017, Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice, J. Pineal Res., 63, 10.1111/jpi.12439
Alers, 2013, Antenatal melatonin as an antioxidant in human pregnancies complicated by fetal growth restriction--a phase I pilot clinical trial: study protocol, BMJ Open., 3, 10.1136/bmjopen-2013-004141
Wilkinson, 2013, Melatonin for women in pregnancy for neuroprotection of the fetus (protocol), Cochrane Database Syst. Rev. Online, 10.1002/14651858.CD010527
Wilkinson, 2016, Melatonin for women in pregnancy for neuroprotection of the fetus, Cochrane Database Syst. Rev., 3, CD010527
Miller, 2014, Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction, J. Pineal Res., 56, 283, 10.1111/jpi.12121
Fahey, 1997, Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens, Proc. Natl. Acad. Sci. U. S. A., 94, 10367, 10.1073/pnas.94.19.10367
Juurlink, 2001, Therapeutic potential of dietary phase 2 enzyme inducers in ameliorating diseases that have an underlying inflammatory component, Can. J. Physiol. Pharmacol., 79, 266, 10.1139/y00-120
Juurlink, 2003, Can dietary intake of phase 2 protein inducers affect the rising epidemic of diseases such as type 2 diabetes?, MedGenMed Medscape Gen. Med., 5, 25
Shapiro, 2001, Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans, Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol., 10, 501
Shapiro, 2006, Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study, Nutr. Cancer, 55, 53, 10.1207/s15327914nc5501_7
Fahey, 1999, Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc., 37, 973, 10.1016/S0278-6915(99)00082-4
van Poppel, 1999, Brassica vegetables and cancer prevention. Epidemiology and mechanisms, Adv. Exp. Med. Biol., 472, 159, 10.1007/978-1-4757-3230-6_14
Zhu, 2010, The impact of loss of myrosinase on the bioactivity of broccoli products in F344 rats, J. Agric. Food Chem., 58, 1558, 10.1021/jf9034817
Yuan, 2018, Sulforaphane restores acetyl-histone H3 binding to bcl-2 promoter and prevents apoptosis in ethanol-exposed neural crest cells and mouse embryos, Exp. Neurol., 1, 60, 10.1016/j.expneurol.2017.10.020
Shevell, 2011, A ‘global’ approach to global developmental delay and intellectual disability?, Dev. Med. Child. Neurol., 53, 105, 10.1111/j.1469-8749.2010.03826.x
Dinkova-Kostova, 2008, Phytochemicals as protectors against ultraviolet radiation: versatility of effects and mechanisms, Planta Med., 74, 1548, 10.1055/s-2008-1081296
Dinkova-Kostova, 2008, Direct and indirect antioxidant properties of inducers of cytoprotective proteins, Mol. Nutr. Food Res., 52, S128
Dinkova-Kostova, 2010, Dietary glucoraphanin-rich broccoli sprout extracts protect against UV radiation-induced skin carcinogenesis in SKH-1 hairless mice, Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol., 9, 597
Brandenburg, 2010, Sulforaphane suppresses LPS-induced inflammation in primary rat microglia, Inflamm. Res. Off. J. Eur. Histamine Res. Soc. Al, 59, 443
Itoh, 1999, Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain, Genes Dev., 13, 76, 10.1101/gad.13.1.76
Dinkova-Kostova, 2002, Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants, Proc. Natl. Acad. Sci. U. S. A., 99, 11908, 10.1073/pnas.172398899
Zhang, 2006, Mechanistic studies of the Nrf2-Keap1 signaling pathway, Drug. Metab. Rev., 38, 769, 10.1080/03602530600971974
Dinkova-Kostova, 2011, Induction of the Keap1/Nrf2/ARE pathway by oxidizable diphenols, Chem. Biol. Interact., 192, 101, 10.1016/j.cbi.2010.09.010
Nguyen, 2009, The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress, J. Biol. Chem., 284, 13291, 10.1074/jbc.R900010200
Kraft, 2004, Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult, J. Neurosci. Off. J. Soc. Neurosci., 24, 1101, 10.1523/JNEUROSCI.3817-03.2004
Kwak, 2007, Role of increased expression of the proteasome in the protective effects of sulforaphane against hydrogen peroxide-mediated cytotoxicity in murine neuroblastoma cells, Free Radic. Biol. Med., 43, 809, 10.1016/j.freeradbiomed.2007.05.029
Lee, 2003, Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis, J. Biol. Chem., 278, 12029, 10.1074/jbc.M211558200
Yoon, 2008, Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme, Biochem. Pharmacol., 75, 2214, 10.1016/j.bcp.2008.02.029
Guerrero-Beltrán, 2010, Protective effect of sulforaphane against cisplatin-induced mitochondrial alterations and impairment in the activity of NAD(P)H: quinone oxidoreductase 1 and γ glutamyl cysteine ligase: studies in mitochondria isolated from rat kidney and in LLC-PK1 cells, Toxicol. Lett., 199, 80, 10.1016/j.toxlet.2010.08.009
Guerrero-Beltrán, 2012, Protective effect of sulforaphane against oxidative stress: recent advances, Exp. Toxicol. Pathol. Off. J. Ges. Toxikol. Pathol., 64, 503, 10.1016/j.etp.2010.11.005
Guerrero-Beltrán, 2010, Sulforaphane protects against cisplatin-induced nephrotoxicity, Toxicol. Lett., 192, 278, 10.1016/j.toxlet.2009.11.007
Zhao, 2010, Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway, World J. Gastroenterol., 16, 3002, 10.3748/wjg.v16.i24.3002
Innamorato, 2008, The transcription factor Nrf2 is a therapeutic target against brain inflammation, J. Immunol. Baltim. Md 1950, 181, 680
Zhao, 2005, Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury, J. Neurosci. Res., 82, 499, 10.1002/jnr.20649
Zhao, 2007, Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury, J. Neurosci. Off. J. Soc. Neurosci., 27, 10240, 10.1523/JNEUROSCI.1683-07.2007
Zhao, 2006, Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents, Neurosci. Lett., 393, 108, 10.1016/j.neulet.2005.09.065
Dash, 2009, Sulforaphane improves cognitive function administered following traumatic brain injury, Neurosci. Lett., 460, 103, 10.1016/j.neulet.2009.04.028
Black, 2015, Broccoli sprout supplementation during pregnancy prevents brain injury in the newborn rat following placental insufficiency, Behav. Brain Res., 289, 10.1016/j.bbr.2015.05.033
Nguyen, 2017, Neurodevelopmental reflex testing in neonatal rat pups, J. Vis. Exp. JoVE, 10.3791/55261
Li, 2018, Temporal efficacy of a sulforaphane-based broccoli sprout diet in prevention of breast cancer through modulation of epigenetic mechanisms, Cancer Prev. Res. (Phila. Pa.), 1
Nutrition, C. for F. S. and A. Foodborne Illness & Contaminants - Food Safety for Pregnant Women. Available at: https://www.fda.gov/food/foodborneillnesscontaminants/ucm312704.htm (Accessed 21 June 2018).
Yao, 2016, Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice, Sci. Rep., 1, 30659, 10.1038/srep30659
Zhang, 2017, Prophylactic effects of sulforaphane on depression-like behavior and dendritic changes in mice after inflammation, J. Nutr. Biochem., 1, 134, 10.1016/j.jnutbio.2016.10.004
Shirai, 2015, Dietary intake of sulforaphane-rich broccoli sprout extracts during juvenile and adolescence can prevent phencyclidine-induced cognitive deficits at adulthood, PLoS ONE Electron. Resour., 10, e0127244, 10.1371/journal.pone.0127244
Singh, 2016, Sulforaphane treatment of Young men with autism spectrum disorder, CNS Neurol. Disord. Drug. Targets, 15, 597, 10.2174/1871527315666160413122525
Singh, 2014, Sulforaphane treatment of autism spectrum disorder (ASD), Proc. Natl. Acad. Sci. U. S. A., 111, 15550, 10.1073/pnas.1416940111
2018
Kushad, 1999, Variation of glucosinolates in vegetable crops of Brassica oleracea, J. Agric. Food Chem., 47, 1541, 10.1021/jf980985s
Scholl, 2000, Folic acid: influence on the outcome of pregnancy, Am. J. Clin. Nutr., 71, 10.1093/ajcn/71.5.1295s
Golan, 2004, Maternal hypoxia during pregnancy induces fetal neurodevelopmental brain damage: partial protection by magnesium sulfate, J. Neurosci. Res., 78, 430, 10.1002/jnr.20269
Gerstein, 2005, Remodeling of hippocampal GABAergic system in adult offspring after maternal hypoxia and magnesium sulfate load: immunohistochemical study, Exp. Neurol., 196, 18, 10.1016/j.expneurol.2005.06.019
Burd, 2010, Magnesium sulfate reduces inflammation-associated brain injury in fetal mice.[Erratum appears in Am J obstet gynecol. 2010 jun;202(6):603], J. Obstet, 202
Louzoun-Kaplan, 2008, Prenatal hypoxia down regulates the GABA pathway in newborn mice cerebral cortex; Partial protection by MgSO4, Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci., 26, 77, 10.1016/j.ijdevneu.2007.09.002
Hallak, 2000, Magnesium sulfate protection of fetal rat brain from severe maternal hypoxia, Obstet. Gynecol., 96, 124
Tam Tam, 2011, Magnesium sulfate ameliorates maternal and fetal inflammation in a rat model of maternal infection, J. Obstet., 204
Solaroglu, 2011, Neuroprotective effect of magnesium sulfate treatment on fetal brain in experimental intrauterine ischemia reperfusion injury, J. Matern.-Fetal, 24, 1259, 10.3109/14767058.2011.572202
Ginsberg, 2017, Magnesium sulfate (MG) prevents maternal inflammation induced offspring cerebral injury evident on MRI but not via IL-1beta, Neuroscience, 98–105
Beloosesky, 2016, Maternal magnesium sulfate fetal neuroprotective effects to the fetus: inhibition of neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation in a rodent model, J. Obstet., 215
Lamhot, 2015, Magnesium sulfate prevents maternal inflammation-induced impairment of learning ability and memory in rat offspring, J. Obstet., 213
Maulik, 1999, Oxygen free radical generation during in-utero hypoxia in the fetal guinea pig brain: the effects of maturity and of magnesium sulfate administration, Brain Res., 817, 117, 10.1016/S0006-8993(98)01235-9
Gano, 2016, Antenatal exposure to magnesium sulfate Is associated with reduced cerebellar hemorrhage in preterm newborns, J. Pediatr., 68–74
Ohhashi, 2016, Magnesium sulphate and perinatal mortality and morbidity in very-low-birthweight infants born between 24 and 32 weeks of gestation in Japan, J. Obstet., 140–145
Bachnas, 2014, Influence of antenatal magnesium sulfate application on cord blood levels of brain-derived neurotrophic factor in premature infants, J. Perinat. Med., 42, 129, 10.1515/jpm-2013-0137
Crowther, 2003, Effect of magnesium sulfate given for neuroprotection before preterm birth: a randomized controlled trial, JAMA, 290, 2669, 10.1001/jama.290.20.2669
Rouse, 2008, A randomized, controlled trial of magnesium sulfate for the prevention of cerebral palsy, N. Engl. J. Med., 359, 895, 10.1056/NEJMoa0801187