Preventing Pressure Oscillations Does Not Fix Local Linear Stability Issues of Entropy-Based Split-Form High-Order Schemes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). arXiv:1411.1607 [cs.MS]
Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014). https://doi.org/10.1137/130932193
Carpenter, M.H., Parsani, M., Fisher, T.C., Nielsen, E.J.: Towards an entropy stable spectral element framework for computational fluid dynamics. In: 54th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics (2016). https://doi.org/10.2514/6.2016-1058
Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018). https://doi.org/10.1016/j.jcp.2018.02.033
Chan, J., Fernández, D.C.D.R., Carpenter, M.H.: Efficient entropy stable Gauss collocation methods. SIAM J. Sci. Comput. 41(5), A2938–A2966 (2019). https://doi.org/10.1137/18M1209234
Chen, H.: Means generated by an integral. Math. Mag. 78(5), 397–399 (2005). https://doi.org/10.2307/30044201
Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025
Derigs, D., Winters, A.R., Gassner, G.J., Walch, S.: A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD. J. Comput. Phys. 330, 624–632 (2017). https://doi.org/10.1016/j.jcp.2016.10.055
Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014). https://doi.org/10.1016/j.compfluid.2014.02.016
Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014
Flad, D., Gassner, G.: On the use of kinetic energy preserving DG-schemes for large eddy simulation. J. Comput. Phys. 350, 782–795 (2017). https://doi.org/10.1016/j.jcp.2017.09.004
Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013). https://doi.org/10.1137/120890144
Gassner, G.J., Svärd, M., Hindenlang, F.J.: Stability issues of entropy-stable and/or split-form high-order schemes (2020). arXiv:2007.09026 [math.NA]
Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016). https://doi.org/10.1016/j.jcp.2016.09.013
Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151–164 (1983). https://doi.org/10.1016/0021-9991(83)90118-3
Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983). https://doi.org/10.1137/1025002
Hicken, J.E.: Entropy-stable, high-order summation-by-parts discretizations without interface penalties. J. Sci. Comput. 82(2), 50 (2020). https://doi.org/10.1007/s10915-020-01154-8
Hicken, J.E., Fernández, D.C.D.R., Zingg, D.W.: Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016). https://doi.org/10.1137/15M1038360
Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54(2), 223–234 (1986). https://doi.org/10.1016/0045-7825(86)90127-1
Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55
Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021
Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34(2), 188–208 (2008). https://doi.org/10.1007/s10915-007-9172-6
Kennedy, C.A., Carpenter, M.H.: Fourth order 2N-storage Runge-Kutta schemes. Technical Memorandum NASA-TM-109112, NASA, NASA Langley Research Center, Hampton (1994)
Klose, B.F., Jacobs, G.B., Kopriva, D.A.: Assessing standard and kinetic energy conserving volume fluxes in discontinuous Galerkin formulations for marginally resolved Navier-Stokes flows. Comput. Fluids (2020). https://doi.org/10.1016/j.compfluid.2020.104557
Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974)
Kuya, Y., Totani, K., Kawai, S.: Kinetic energy and entropy preserving schemes for compressible flows by split convective forms. J. Comput. Phys. 375, 823–853 (2018). https://doi.org/10.1016/j.jcp.2018.08.058
LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/S003614290240069X
Nordström, J., Björck, M.: Finite volume approximations and strict stability for hyperbolic problems. Appl. Numer. Math. 38(3), 237–255 (2001). https://doi.org/10.1016/S0168-9274(01)00027-7
Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45(4), 453–473 (2003). https://doi.org/10.1016/S0168-9274(02)00239-8
Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations. J. Comput. Phys. 290, 132–138 (2015). https://doi.org/10.1016/j.jcp.2015.02.042
Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. J. Comput. Phys. 292, 88–113 (2015). https://doi.org/10.1016/j.jcp.2015.03.026
Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. arXiv:1701.02264 [math.NA]
Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig (2018)
Ranocha, H.: Entropy conserving and kinetic energy preserving numerical methods for the Euler equations using summation-by-parts operators. In: Sherwin S.J., Moxey, D., Peiró, J., Vincent, P.E., Schwab, C. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, Lecture Notes in Computational Science and Engineering, vol. 134, pp. 525–535. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39647-3_42
Ranocha, H.: On strong stability of explicit Runge-Kutta methods for nonlinear semibounded operators. IMA J. Numer. Anal. (2020). https://doi.org/10.1093/imanum/drz070. arXiv:1811.11601 [math.NA]
Ranocha, H., Gassner, G.J.: Reproducibility: preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes (2020). https://github.com/trixi-framework/paper-EC-KEP-PEP. https://doi.org/10.5281/zenodo.4054366
Ranocha, H., Ketcheson, D.I.: Energy stability of explicit Runge-Kutta methods for nonautonomous or nonlinear problems. SIAM J. Numer. Anal. arXiv:1909.13215 [math.NA]
Ranocha, H., Mitsotakis, D., Ketcheson, D.I.: A broad class of conservative numerical methods for dispersive wave equations. Commun. Comput. Phys. arXiv:2006.14802 [math.NA]
Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. arXiv:1511.02052 [math.NA]
Revels, J., Lubin, M., Papamarkou, T.: Forward-mode automatic differentiation in Julia (2016). arXiv:1607.07892 [cs.MS]
Rojas, D., Boukharfane, R., Dalcin, L., Fernández, D.C.D.R., Ranocha, H., Keyes, D.E., Parsani, M.: On the robustness and performance of entropy stable discontinuous collocation methods. J. Comput. Phys. arXiv:1911.10966 [math.NA]
Schlottke-Lakemper, M., Gassner, G.J., Ranocha, H., Winters, A.R.: Trixi.jl: a tree-based numerical simulation framework for hyperbolic PDEs written in Julia (2020). https://github.com/trixi-framework/Trixi.jl. https://doi.org/10.5281/zenodo.3996439
Schlottke-Lakemper, M., Winters, A.R., Ranocha, H., Gassner, G.J.: A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics (2020). arXiv:2008.10593 [math.NA]
Shima, N., Kuya, Y., Tamaki, Y., Kawai, S.: Preventing spurious pressure oscillations in split convective form discretization for compressible flows. J. Comput. Phys. (2020). https://doi.org/10.1016/j.jcp.2020.110060
Sjögreen, B., Yee, H.: High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows. J. Comput. Phys. 364, 153–185 (2018). https://doi.org/10.1016/j.jcp.2018.02.003
Sjögreen, B., Yee, H.C.: On skew-symmetric splitting and entropy conservation schemes for the Euler equations. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds) Numerical Mathematics and Advanced Applications 2009: Proceedings of ENUMATH 2009, the 8th European Conference on Numerical Mathematics and Advanced Applications, Uppsala, July 2009, pp. 817–827. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-11795-4_88
Sjögreen, B., Yee, H.C., Kotov, D.: Skew-symmetric splitting and stability of high order central schemes. J. Phys. Conf. Ser. 837, 012019 (2017). https://doi.org/10.1088/1742-6596/837/1/012019
Strand, B.: Summation by parts for finite difference approximations for $$d/dx$$. J. Comput. Phys. 110(1), 47–67 (1994). https://doi.org/10.1006/jcph.1994.1005
Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014). https://doi.org/10.1016/j.jcp.2014.02.031
Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-0890255-3
Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156
Vasil, G., Brown, B., Burns, K., Lecoanet, D., McCourt, M., Oishi, J., O’Leary, R., Quataert, E., Stone, J.: A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics. Mon. Not. R. Astron. Soc. 455(4), 4274–4288 (2016). https://doi.org/10.1093/mnras/stv2564
Winters, A.R., Moura, R.C., Mengaldo, G., Gassner, G.J., Walch, S., Peiro, J., Sherwin, S.J.: A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. J. Comput. Phys. 372, 1–21 (2018). https://doi.org/10.1016/j.jcp.2018.06.016