Prevalence of silicone oil droplets in eyes treated with intravitreal injection

Gustavo Barreto Melo1,2, Celso de Souza Dias2, Fábio Barreto Morais1,2, Alexandre Lima Cardoso2, Ana Galrão Almeida Figueiredo3, Acácio Alves Souza Lima Filho1, Eduardo Büchele Rodrigues1, Geoffrey G. Emerson4, Maurício Maia1
1Federal University of São Paulo, São Paulo, Brazil
2Hospital de Olhos de Sergipe, Rua Campo do Brito, Aracaju, Brazil
3Tiradentes University-UNIT, Aracaju, Brazil
4Retina Center of Minnesota, Minneapolis, USA

Tóm tắt

Abstract Objective

To assess the number of eyes with silicone oil in the vitreous after intravitreal injection.

Methods

This cross-sectional, comparative study was divided into 2 groups: (1) treatment—eyes subjected to antiangiogenic therapy; (2) control—no history of intravitreal injection. Subjects were assessed regarding age, gender, clinical diagnosis, lens status, visual acuity and number of previous intravitreal injections. All eyes underwent a meticulous slit-lamp and ultrasound examination for the identification of silicone oil. ImageJ software was used to quantify the index of silicone oil (IOS) by ultrasonography.

Results

Sixty-seven eyes (30 controls, 37 treated) were included. Slit-lamp examination found silicone oil droplets in 25 out of 37 (67.57%) treated eyes and in none of the control group. Ultrasonography identified silicone oil in 28 out of 37 (75.68%) treated eyes and in 1 out of 30 (3.33%) controls. An observed agreement of 85.07% and a Cohen’s Kappa coefficient of 69.10% (p < 0.0001) between ultrasonography and biomicroscopy were found. Wilcoxon test showed a statistically significant difference (p = 0.0006) in IOS between controls (0.41 ± 0.43%) and treated eyes (2.69 ± 2.55%). Spearman’s correlation test (0.61; p < 0.0001) showed that the greater the number of injections, the higher the IOS.

Conclusions

Silicone oil droplets were found in the majority of the eyes previously treated with antiangiogenic intravitreal injection. The greater the number of injections, the higher the likelihood of finding silicone oil. An improvement in the technique of injection and better-quality syringes post-injection silicone oil droplets.

Từ khóa


Tài liệu tham khảo

Grzybowski A, Told R, Sacu S, et al. 2018 update on intravitreal injections: euretina expert consensus recommendations. Ophthalmologica. 2018;239:181–93.

Lad EM, Moshfeghi DM. Minimizing the risk of endophthalmitis following intravitreal injections. Compr Ophthalmol Update. 2006;7:277–84.

Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–31.

Tah V, Orlans HO, Hyer J, et al. Anti-VEGF therapy and the retina: an update. J Ophthalmol. 2015;2015:627674.

Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123:1351–9.

Bakri SJ, Ekdawi NS. Intravitreal silicone oil droplets after intravitreal drug injections. Retina. 2008;28:996–1001.

Yu JH, Gallemore E, Kim JK, Patel R, Calderon J, Gallemore RP. Silicone oil droplets following intravitreal bevacizumab injections. Am J Ophthalmol Case Rep. 2017;10:142–4.

Khurana RN, Chang LK, Porco TC. Incidence of presumed silicone oil droplets in the vitreous cavity after intravitreal bevacizumab injection with insulin syringes. JAMA Ophthalmol. 2017;135:800–3.

Avery RL, Castellarin AA, Dhoot DS, et al. Large silicone droplets after intravitreal bevacizumab (Avastin). Retin Cases Brief Rep. 2017. https://doi.org/10.1097/icb.0000000000000570 .

Thompson JT. Advantages and limitations of small gauge vitrectomy. Surv Ophthalmol. 2011;56:162–72.

Goldberg RA, Shah CP, Wiegand TW, Heier JS. Noninfectious inflammation after intravitreal injection of aflibercept: clinical characteristics and visual outcomes. Am J Ophthalmol. 2014;158:733–7.

Williams PD, Chong D, Fuller T, Callanan D. Noninfectious vitritis after intravitreal injection of anti-VEGF agents. Variations in rates and presentation by medication. Retina. 2016;36:909–13.

Hahn P, Chung MM, Flynn HW Jr, et al. Postmarketing analysis of aflibercept-related sterile intraocular inflammation. JAMA Ophthalmol. 2015;133:421–6.

Melo GB, Figueira ACM, Batista FAH, et al. Inflammatory reaction after aflibercept intravitreal injections associated with silicone oil droplets released from syringes: a case-control study. Ophthalmic Surg Lasers Imaging Retina. 2019;50(5):288–94. https://doi.org/10.3928/23258160-20190503-05 .

Sonoda S, Sakamoto T, Yamashita T, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci. 2014;55:3893–9.

Melo GB, Dias CS Jr, Carvalho MR, et al. Release of silicone oil from syringes. Int J Retina Vitreous. 2019;5:1.

Emerson GG. Silicone oil droplets are more common in fluid from BD insulin syringes as compared to other syringes. J VitreoRet Dis. 2017;1:401–6.

Melo GB, Emerson GG, Dias CS Jr, et al. Release of silicone oil and the off-label use of syringes in ophthalmology. Br J Ophthalmol. 2019. https://doi.org/10.1136/bjophthalmol-2019-313823 .

Melo GB, Emerson GG, Lima Filho AAS, Ota S, Maia M. Needles as a source of silicone oil during intravitreal injection. Eye. 2019;33(6):1025-1027. https://doi.org/10.1038/s41433-019-0365-7 .

Shiihara H, Terasaki H, Yoshihara N, et al. Amount of residual silicone oil in vitreous cavity is significantly correlated with axial length. Retina. 2016;36:181–7.