Prevalence and characteristics of resistant hypertension at primary clinics in Korea: a nationwide cross-sectional study
Tóm tắt
Although resistant hypertension (RH) is known to be associated with higher rates of cardiovascular events than is non-RH, there are no reported data on the prevalence of RH in Korean patients. We evaluated the prevalence and characteristics of RH among hypertensive patients treated at primary clinics in Korea. Between August 2010 and January 2011, 247 primary care physicians enrolled 3088 patients with essential hypertension. We acquired demographic and anthropometric data using a questionnaire, evaluated blood pressure, and conducted a variety of laboratory tests using serum and urine. RH was defined as systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg with the use of three antihypertensive agents of different classes, including a diuretic, or controlled hypertension with the use of four or more medications. We analyzed 3088 patients with hypertension, 48.3 % of whom were men. The mean age of patients was 64.3 ± 11.3 years and the prevalence of RH was 7.9 %. Patients with RH were more likely to be men, and to have higher waist circumference, increased blood levels of HbA1c, triglycerides, and serum creatinine, lower blood levels of high-density lipoprotein (HDL), and higher rates of current smoker, history of heart failure or coronary artery disease, and electrocardiographic left ventricular hypertrophy (LVH), than were patients with non-RH (all comparisons, P < 0.05). In the multivariate analysis, RH was shown to be significantly associated with the following conditions: presence of electrocardiographic LVH (odds ratio [OR] 2.23, 95 % confidence interval [CI] 1.34–3.71), current smoker (OR 1.75, 95 % CI 1.27–2.40), renal impairment (OR 1.65, 95 % CI 1.23–2.22), abdominal obesity (OR 1.60, 95 % CI 1.20–2.13), and cardiovascular diseases (OR 1.50, 95 % CI 1.04–2.17). The prevalence of RH was relatively low at primary clinics in Korea compared with the prevalence reported in other countries. RH was associated with electrocardiographically confirmed LVH, renal impairment, current smoker, abdominal obesity, and cardiovascular diseases. These are the first reported data of RH in Korea. Our findings may be helpful in the early detection and thorough clinical management of patients with RH at primary clinics.
Tài liệu tham khảo
Lithovius R, Harjutsalo V, Forsblom C, Saraheimo M, Groop P-H, Group FS. Antihypertensive treatment and resistant hypertension in patients with type 1 diabetes by stages of diabetic nephropathy. Diabetes Care. 2014;37(3):709–17. doi:10.2337/dc13-2023.
Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19. doi:10.1161/hypertensionaha.108.189141.
Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463–91. doi:10.1210/er.2007-0006.
Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125(13):1635–42. doi:10.1161/circulationaha.111.068064.
Sakhuja A, Textor SC, Taler SJ. Uncontrolled hypertension by the 2014 evidence-based guideline: results from NHANES 2011–2012. J Hypertens. 2015;33(3):644–51. doi:10.1097/hjh.0000000000000442. discussion 52.
McAdam-Marx C, Ye X, Sung JC, Brixner DI, Kahler KH. Results of a retrospective, observational pilot study using electronic medical records to assess the prevalence and characteristics of patients with resistant hypertension in an ambulatory care setting. Clin Ther. 2009;31(5):1116–23. doi:10.1016/j.clinthera.2009.05.007.
Kim K-I, Lee Y-S, Park CG. Impact of global risk assessment on the evaluation of hypertensive patients treated by primary care physicians in Korea (a Nation-Wide, Multi-Center, Observational, Cross-Sectional, Epidemiologic Study to Evaluate the Proportion of Cardiovascular Risk Factors in Korean hypertensive patients: WONDER study). Hypertens Res. 2014;37(7):665–71. doi:10.1038/hr.2014.55.
James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20. doi:10.1001/jama.2013.284427.
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.
Justesen TI, Petersen JLA, Ekbom P, Damm P, Mathiesen ER. Albumin-to-creatinine ratio in random urine samples might replace 24-h urine collections in screening for micro- and macroalbuminuria in pregnant woman with type 1 diabetes. Diabetes Care. 2006;29(4):924–5.
Dahlöf B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359(9311):995–1003. doi:10.1016/s0140-6736(02)08089-3.
Dahlöf B, Devereux RB, Julius S, Kjeldsen SE, Beevers G, de Faire U, et al. Characteristics of 9194 patients with left ventricular hypertrophy: the LIFE study. Losartan Intervention for Endpoint Reduction in Hypertension. Hypertension. 1998;32(6):989–97.
Black HR, Elliott WJ, Grandits G, Grambsch P, Lucente T, White WB, et al. Principal results of the Controlled Onset Verapamil Investigation of Cardiovascular End Points (CONVINCE) trial. JAMA. 2003;289(16):2073–82. doi:10.1001/jama.289.16.2073.
Cushman WC, Ford CE, Cutler JA, Margolis KL, Davis BR, Grimm RH, et al. Success and predictors of blood pressure control in diverse North American settings: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). J Clin Hypertens (Greenwich). 2002;4(6):393–404.
National Health Insurance Corporation HIRAS. 2014 National Health Insurance Statistical Yearbook. Statistical report by Health Insurance Review and Assessment Services. 2014.
Cuspidi C, Vaccarella A, Negri F, Sala C. Resistant hypertension and left ventricular hypertrophy: an overview. J Am Soc Hypertens. 2010;4(6):319–24. doi:10.1016/j.jash.2010.10.003.
Goodfriend TL, Calhoun DA. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension. 2004;43(3):518–24. doi:10.1161/01.HYP.0000116223.97436.e5.
Kaplan NM. Resistant hypertension. J Hypertens. 2005;23(8):1441–4.
Moser M, Cushman W, Handler J. Resistant or difficult-to-treat hypertension. J Clin Hypertens (Greenwich). 2006;8(6):434–40.
Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27(3 Pt 2):481–90.
Garrison RJ, Kannel WB, Stokes J, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med. 1987;16(2):235–51.
Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41(3 Pt 2):625–33. doi:10.1161/01.hyp.0000052314.95497.78.
Yiannakopoulou EC, Papadopulos JS, Cokkinos DV, Mountokalakis TD. x. Eur J Cardiovasc Prev Rehabil. 2005;12(3):243–9.