Pressure‐Accelerated Azide–Alkyne Cycloaddition: Micro Capillary versus Autoclave Reactor Performance

Wiley - Tập 8 Số 3 - Trang 504-512 - 2015
Svetlana Borukhova1, Andreas Seeger2, Timothy Noël1, Qi Wang1, Markus Busch2, Volker Hessel1
1Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Den Dolech 2, 5612AZ, Eindhoven (The Netherlands).
2Technische Chemie III, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt (Germany)

Tóm tắt

Abstract

Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel‐process‐window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide–alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide–alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high‐pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space–time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide–alkyne cycloadditions to widen the scope of the presented methodology.

Từ khóa


Tài liệu tham khảo

10.1002/3527602658.ch2

 

10.1002/hlca.200590156

10.1016/j.chemphys.2011.04.021

 

10.1002/ceat.200900474

10.1002/9781118498521.ch4

10.1002/ceat.200900272

10.1002/cssc.201200766

10.1002/anie.201004637

10.1002/ange.201004637

 

10.1021/jm2006029

Baraldi P. T., 2012, Green Process Synth., 1, 149

10.1039/c1cs15075h

 

10.1002/cssc.201300684

10.1016/j.tet.2013.02.038

10.1002/cssc.201000368

10.1016/j.bmc.2010.03.073

10.1002/ejoc.200900077

10.1002/chem.200800707

 

10.1039/b703394j

10.1002/ceat.200900369

10.1016/j.ces.2012.10.011

10.1039/b717985e

10.1016/j.cej.2007.07.049

10.1039/b501169h

 

10.1002/anie.200602485

10.1002/ange.200602485

10.1126/science.1068018

10.1039/c2gc16220b

 

10.1021/ie200936b

10.1016/j.cej.2006.12.036

10.1039/C0LC00058B

 

10.1002/1099-0690(200108)2001:15<2869::AID-EJOC2869>3.0.CO;2-H

10.1002/(SICI)1099-1395(199908)12:8<619::AID-POC171>3.0.CO;2-U

10.1021/cm101815b

10.1002/ejoc.201101538

10.1021/jo301203k

10.1039/c2gc36069a

10.1002/poc.1131

 

10.1016/j.tet.2005.06.016

10.1002/1521-3773(20020315)41:6<1031::AID-ANIE1031>3.0.CO;2-K

10.1002/1521-3757(20020315)114:6<1073::AID-ANGE1073>3.0.CO;2-J

10.1016/j.tetasy.2004.08.002

10.1021/ja8045684

10.1021/op800244m

 

Huisgen R., 1961, Proc. Chem. Soc., 357

10.1002/anie.196305651

10.1002/ange.19630751304

10.1021/jo00024a047

10.1039/a804681f

10.1016/j.theochem.2007.07.004

10.1016/j.tetasy.2010.06.013

 

10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

10.1002/1521-3757(20010601)113:11<2056::AID-ANGE2056>3.0.CO;2-W

10.1016/S1359-6446(03)02933-7

10.1002/adsc.200404383

10.1039/B613014N

10.1002/anie.200601677

10.1002/ange.200601677

 

10.1039/b702995k

10.1002/chem.201002215

10.1002/cssc.201200323

10.1002/chem.201103393

10.3762/bjoc.7.57

10.1007/s11940-013-0223-z

10.1021/op500166n

10.1039/C1OB06190A

10.1039/b904091a

 

10.1002/ceat.201200038

10.1021/ie4002052

10.1016/j.cej.2007.07.038