Preservation of ∼3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa

Earth and Planetary Science Letters - Tập 241 Số 3-4 - Trang 707-722 - 2006
Neil R. Banerjee1,2, Harald Furnes3, Karlis Muehlenbachs2, Hubert Staudigel4, Maarten de Wit5
1Department of Earth Science, University of Bergen, Allegt. 41, 5007, Bergen, Norway
2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
3Department of Earth Science, University of Bergen, Allégt. 41, 5007 Bergen, Norway
4Scripps Institution of Oceanography, University of California, La Jolla, CA 92093–0225, USA.
5AEON and Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa

Tóm tắt

Từ khóa


Tài liệu tham khảo

Thorseth, 1995, Microbes play an important role in the alteration of oceanic crust, Chem. Geol., 126, 137, 10.1016/0009-2541(95)00114-8

Furnes, 1996, Microbial activity in the alteration of glass from pillow lavas from Hole 896A, vol. 148, 191

Fisk, 1998, The extent of microbial life in the volcanic crust of the ocean basins, Science, 281, 978, 10.1126/science.281.5379.978

Torsvik, 1998, Evidence for microbial activity at the glass–alteration interface in oceanic basalts, Earth Planet. Sci. Lett., 162, 165, 10.1016/S0012-821X(98)00164-2

Furnes, 1999, Biological mediation in ocean crust alteration: how deep is the deep biosphere?, Earth Planet. Sci. Lett., 166, 97, 10.1016/S0012-821X(99)00005-9

Furnes, 1999, Depth of active bio-alteration in the ocean crust: Costa Rica Rift (Hole 504B), Terra Nova, 11, 228, 10.1046/j.1365-3121.1999.00251.x

Furnes, 2001, Bioalteration of basaltic glass in the oceanic crust, Geochem. Geophys. Geosyst., 2, 10.1029/2000GC000150

Furnes, 2001, Microbial fractionation of carbon isotopes in altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift, Chem. Geol., 173, 313, 10.1016/S0009-2541(00)00285-0

Thorseth, 2001, Keldysh-98 Scientific party, Diversity of life in ocean floor basalts, Earth Planet. Sci. Lett., 194, 31, 10.1016/S0012-821X(01)00537-4

Thorseth, 2003, Microbial alteration of 0–30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance, Earth Planet. Sci. Lett., 215, 237, 10.1016/S0012-821X(03)00427-8

Banerjee, 2003, Tuff life: bioalteration in volcaniclastic rocks from Ontong Java Plateau, Geochem. Geophys. Geosyst., 4, 10.1029/2002GC000470

Fisk, 2003, Evidence of biological activity in Hawaiian subsurface basalts, Geochem. Geophys. Geosyst., 4, 10.1029/2002GC000387

Furnes, 2003, Bioalteration recorded in ophiolitic pillow lavas, vol. 218, 415

Furnes, 2004, Early life recorded in Archean pillow lavas, Science, 304, 578, 10.1126/science.1095858

Krumbein, 1991, Biocorrosion and biodeterioration of antique and medieval glass, Geomicrobiol. J., 9, 139, 10.1080/01490459109385995

Ross, 1986, Biogenic grooving on glass shards, Geology, 14, 571, 10.1130/0091-7613(1986)14<571:BGOGS>2.0.CO;2

Thorseth, 1992, The importance of microbiological activity in the alteration of natural basaltic glass, Geochim. Cosmochim. Acta, 56, 845, 10.1016/0016-7037(92)90104-Q

Thorseth, 1995, Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach, Chem. Geol., 119, 139, 10.1016/0009-2541(94)00098-S

Staudigel, 1995, Biologically mediated dissolution of glass, Chem. Geol., 126, 147, 10.1016/0009-2541(95)00115-X

Staudigel, 1998, Biologically mediated dissolution of volcanic glass in seawater, Earth Planet. Sci. Lett., 164, 233, 10.1016/S0012-821X(98)00207-6

Giovannoni, 1996, Genetic evidence for endolithic microbial life colonizing basaltic glass/seawater interfaces, vol. 148, 207

Fisk, 1999, Evidence of microbial activity in the oldest ocean crust, EOS, 80, F84

Staudigel, 2004, The Oceanic Crust as a Bioreactor, vol. 144, 325

Lysnes, 2004, Microbial community diversity in seafloor basalts from the Arctic spreading ridges, FEMS Microbiol, Ecology, 50, 213

Schidlowski, 1979, Carbon isotope geochemistry of the 3.7×109 yr-old Isua sediments, West Greenland: implications for the Archean carbon and oxygen cycles, Geochim. Cosmochim. Acta, 43, 189, 10.1016/0016-7037(79)90238-2

Schidlowski, 1988, A 3800-million-year isotopic record of life from carbon in sedimentary rocks, Nature, 333, 313, 10.1038/333313a0

Schidlowski, 2001, Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept, Precambrian Res., 106, 117, 10.1016/S0301-9268(00)00128-5

Mojzsis, 1996, Evidence of life on Earth before 3800 million years ago, Nature, 384, 55, 10.1038/384055a0

Ueno, 2002, Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: relationships between metamorphism and carbon isotopic composition, Geochim. Cosmochim. Acta, 66, 1257, 10.1016/S0016-7037(01)00840-7

Rosing, 1999, 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland, Science, 283, 674, 10.1126/science.283.5402.674

van Zuilen, 2002, Reassessing the evidence for the earliest traces of life, Nature, 418, 627, 10.1038/nature00934

van Zuilen, 2003, Graphite and carbonates in the 3.8 Ga old Isua supracrustal belt, southern West Greenland, Precambrian Res., 126, 331, 10.1016/S0301-9268(03)00103-7

Lepland, 2002, Apatite in the Early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker, Precambrian Res., 118, 221, 10.1016/S0301-9268(02)00106-7

Lepland, 2005, Questioning the evidence for Earth's earliest life—Akilia revisited, Geology, 33, 77, 10.1130/G20890.1

Schopf, 1993, Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life, Science, 260, 640, 10.1126/science.260.5108.640

Schopf, 2002, Laser-Raman imagery of Earth's earliest fossils, Nature, 416, 73, 10.1038/416073a

Garcia-Ruiz, 2003, Self-assembled silica-carbonate structures and detection of ancient microfossils, Science, 302, 1194, 10.1126/science.1090163

Brasier, 2002, Questioning the evidence of Earth's oldest fossils, Nature, 416, 76, 10.1038/416076a

Walsh, 1985, Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa, Nature, 314, 530, 10.1038/314530a0

Westall, 2001, Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa, Precambrain Res., 106, 93, 10.1016/S0301-9268(00)00127-3

Westall, 2003, Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: implications for the search for life in ancient rocks, Precambrian Res., 126, 313, 10.1016/S0301-9268(03)00102-5

de Wit, 1987, The Jamestown Ophiolite Complex, Barberton mountain belt: a section through 3.5 Ga oceanic crust, J. Afr. Earth Sci., 6, 681, 10.1016/0899-5362(87)90007-8

Brandl, 1997, The Kaapvaal Craton, South Africa, 581

de Wit, 2004, Archean greenstone belts do contain fragments of ophiolites, vol. 13, 549

Armstrong, 1990, The stratigraphy of the 3.5–3.2 Ga Barberton Greenstone Belt revisited: a single zircon ion microprobe study, Earth Planet. Sci. Lett., 101, 90, 10.1016/0012-821X(90)90127-J

de Ronde, 1994, Tectonic history of the Barberton greenstone belt, South Africa: 490 million years of Archean crustal evolution, Tectonics, 13, 983, 10.1029/94TC00353

Parman, 2004, A subduction origin for komatiites and cratonic lithospheric mantle, SA J. Geol., 107, 107, 10.2113/107.1-2.107

Dziggel, 2002, Metamorphism of the granite–greenstone terrane south of the Barberton greenstone belt, South Africa: an insight into the tectonothermal evolution of the “lower” portions of the Onverwacht Group, Precambrian Res., 114, 221, 10.1016/S0301-9268(01)00225-X

Kisters, 2003, Extensional detachment faulting and core-complex formation in the southern Barberton granite–greenstone terrain, South Africa: evidence for 3.2 Ga orogenic collapse, Precambrian Res., 127, 355, 10.1016/j.precamres.2003.08.002

Lopez-Martinez, 1992, 40Ar/39Ar geochronology study of Komatiites and komatiitic basalts form the lower Onverwacht Volcanics, Barberton Mountain Land, South Africa, Precambrain Res., 57, 91, 10.1016/0301-9268(92)90095-6

Dann, 2000, The Komati Formation, Barberton Greenstone Belt, South Africa: Part 1. New map and magmatic architecture, S. Afr. J. Geol., 103, 47, 10.2113/103.1.47

Dann, 2001, Vesicular komatiites, 3.5 Ga Komati Formation, Barberton Greenstone Belt, South Africa: inflation of submarine lavas and origin of spinifex zones, Bull. Volcanol., 63, 462, 10.1007/s004450100164

Hoffman, 1986, An inferred oxygen isotope profile of Archean oceanic crust, Onverwacht Group, South Africa, Nature, 321, 55, 10.1038/321055a0

de Wit, 1993, Earth's earliest continental lithosphere, hydrothermal flux and crustal recycling, Lithos, 30, 309, 10.1016/0024-4937(93)90043-C

McCrea, 1950, On the isotope chemistry of carbonates and a paleotemperature scale, J. Chem. Phys., 18, 849, 10.1063/1.1747785

Craig, 1957, Isotopic standards for carbon and oxygen and correlation factors for mass-spectrometric analysis of carbon dioxide, Geochim. Cosmochim. Acta, 12, 133, 10.1016/0016-7037(57)90024-8

Craig, 1961, Standards for reporting concentrations of deuterium and 18O in natural waters, Science, 133, 1702, 10.1126/science.133.3465.1702

Alt, 1996, Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: a synthesis of results from site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140 and 148), vol. 148, 417

Hoefs, 1997

Nakamura, 2004, Carbonatization of oceanic crust by the seafloor hydrothermal activity and its significance as a CO2 sink in the Early Archean, Geochim. Cosmochim. Acta, 68, 4595, 10.1016/j.gca.2004.05.023

Furnes, 2001, Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus, J. Geol. Soc. Lond., 158, 75, 10.1144/jgs.158.1.75

Furnes, 2002, Bio-signatures in metabasaltic glass of a Caledonian ophiolite West Norway, Geol. Mag., 139, 601, 10.1017/S0016756802006830

Furnes, 2005, Preservation of biosignatures in the metaglassy volcanic rocks from the Jormua ophiolite complex, Finland, Precambrian Res., 136, 125, 10.1016/j.precamres.2004.09.009

Gruner, 1923, Algae, believed to be Archean, J. Geol., 31, 146, 10.1086/622991

Tyler, 1963, Ambient pyrite grains in Precambrian cherts, Am. J. Sci., 261, 424, 10.2475/ajs.261.5.424

Knoll, 1974, Ambient pyrite in Precambrian chert: new evidence and a theory, Proc. Nat. Acad. Sci. U. S. A., 71, 2329, 10.1073/pnas.71.6.2329

Russel, 1997, The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front, J. Geol. Soc. Lond., 154, 377, 10.1144/gsjgs.154.3.0377

de Wit, 1997, Convergence towards divergent models of greenstone belts, ix