Presepsin as a predictor of septic shock in patients with urinary tract infection

Yoshitaka Sekine1, Kazuhiko Kotani2, Daisuke Oka1, Hiroshi Nakayama1, Yoshiyuki Miyazawa1, Takahiro Syuto1, Seiji Arai1, Masashi Nomura1, Hidekazu Koike1, Hiroshi Matsui1, Yasuhiro Shibata1, Masami Murakami3, Kazuhiro Suzuki1
1Department of Urology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
2Division of Community and Family Medicine, Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke, Japan
3Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan

Tóm tắt

Abstract Background Recently, presepsin has been reported to be a useful biomarker for early diagnosis of sepsis and evaluation of prognosis in septic patients. However, few reports have evaluated its usefulness in patients with urinary tract infections (UTI). This study aimed to evaluate whether presepsin could be a valuable marker for detecting severe sepsis, and whether it could predict the therapeutic course in patients with UTI compared with markers already used: procalcitonin (PCT) and C-reactive protein (CRP). Methods From April 2014 to December 2016, a total of 50 patients with urinary tract infections admitted to Gunma university hospital were enrolled in this study. Vital signs, presepsin, PCT, CRP, white blood cell (WBC) count, causative agents of urinary-tract infections, and other data were evaluated on the enrollment, third, and fifth days. The patients were divided into two groups: with (n = 11) or without (n = 39) septic shock on the enrollment day, and with (n = 7) or without (n = 43) sepsis on the fifth day, respectively. Presepsin was evaluated as a biomarker for systemic inflammatory response syndrome (SIRS) or septic shock. Results Regarding the enrollment day, there was no significant difference of presepsin between the SIRS and non-SIRS groups (p = 0.276). The median value of presepsin (pg/mL) was significantly higher in the septic shock group (p < 0.001). Multivariate logistic regression analysis showed that presepsin (≥ 500 pg/ml) was an independent risk factor for septic shock (p = 0.007). ROC curve for diagnosing septic shock indicated an area under the curve (AUC) of 0.881 for presepsin (vs. 0.690, 0.583, and 0.527 for PCT, CRP and WBC, respectively). Regarding the 5th day after admission, the median presepsin value on the enrollment day was significantly higher in the SIRS groups than in the non-SIRS groups (p = 0.006). On the other hand, PCT (≥ 2 ng/ml) on the enrollment day was an independent risk factor for SIRS. ROC curve for diagnosing sepsis on the fifth day indicated an AUC of 0.837 for PCT (vs. 0.817, 0.811, and 0.802 for presepsin, CRP, and WBC, respectively). Conclusions This study showed that presepsin may be a good marker for diagnosing septic shock based on admission data in patients with UTI.

Từ khóa


Tài liệu tham khảo

Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

Levy MM, Artigas A, Phillips GS, Rhodes A, Beale R, Osborn T, et al. Outcomes of the surviving sepsis campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012;12:919–24.

Brunkhorst FM, Heinz U, Forycki ZF. Kinetics of procalcitonin in iatrogenic sepsis. Intensive Care Med. 1998;24:888–9.

Dandona P, Nix D, Wilson MF, Aljada A, Love J, Assicot M, et al. Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab. 1994;79:1605–8.

Yaegashi Y, Shirakawa K, Sato N, Suzuki Y, Kojika M, Imai S, et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother. 2005;11:234–8.

Nakamura M, Takeuchi T, Naito K, Shirakawa K, Hosaka Y, Yamasaki F, et al. Early elevation of plasma soluble CD14 subtype, a novel biomarker for sepsis, in a rabbit cecal ligation and puncture model. Crit Care. 2008;12(Suppl 2):194.

Zou Q, Wen W, Zhang XC. Presepsin as a novel sepsis biomarker. World J Emerg Med. 2014;5:16–9.

Masson S, Caironi P, Fanizza C, Thomae R, Bernasconi R, Noto A, et al. Circulating presepsin (soluble CD14 subtype) as a marker of host response in patients with severe sepsis or septic shock: data from the multicenter, randomized ALBIOS trial. Intensive Care Med. 2015;41:12–20.

Kim H, Hur M, Moon HW, Yun YM, Di Somma S. Multi-marker approach using procalcitonin, presepsin, galectin-3, and soluble suppression of tumorigenicity 2 for the prediction of mortality in sepsis. Ann Intensive Care. 2017;7:27.

Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–55.

Memar MY, Baghi HB. Presepsin: a promising biomarker for the detection of bacterial infections. Biomed Pharmacother. 2019;111:649–56.

Claessens Y-E, Trabattoni E, Grabar S, Quinguis L, Sahakian G, Anselmo M, et al. Plasmatic presepsin (sCD14-ST) concentrations in acute pyelonephritis in adult patients. Clin Chim Acta. 2017;464:182–8.

Tambo M, Taguchi S, Nakamura Y, Okegawa T, Fukuhara H. Presepsin and procalcitonin as predictors of sepsis based on the new sepsis-3 definitions in obstructive acute pyelonephritis. BMC Urol. 2020;20:23.

Maruna P, Nedelníková K, Gürlich R. Physiology and genetics of procalcitonin. Physiol Res. 2000;49(Suppl 1):57–61.

Lelubre C, Anselin S, Boudjeltia KZ, Biston P, Piagnerelli M. Interpretation of C-reactive protein concentrations in critically ill patients. Biomed Res Int. 2013;2013:124021.

Shozushima T, Takahashi G, Matsumoto N, Kojika M, Okamura Y, Endo S. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J Infect Chemother. 2011;17:764–9.

Ulla M, Pizzolato E, Lucchiari M, Loiacono M, Soardo F, Forno D, et al. Diagnostic and prognostic value of presepsin in the management of sepsis in the emergency department: a multicenter prospective study. Crit Care. 2013;17:R168.

Starre WE, Zunder SM, Vollaard AM, Nieuwkoop CV, Stalenhoef JE, Delfos NM, et al. Prognostic value of pro-adrenomedullin, procalcitonin and C-reactive protein in predicting outcome of febrile urinary tract infection. Clin Microbiol Infect. 2014;20:1048–54.

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–10.

Nakamura Y, Ishikura H, Nishida T, Kawano Y, Yuge R, Ichiki R, et al. Usefulness of presepsin in the diagnosis of sepsis in patients with or without acute kidney injury. BMC Anesthesiol. 2014;14:88.

Amour J, Birenbaum A, Langeron O, Le Manach Y, Bertrand M, Coriat P, et al. Influence of renal dysfunction on the accuracy of procalcitonin for the diagnosis of postoperative infection after vascular surgery. Crit Care Med. 2008;36:1147–54.