Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các điều kiện tiên quyết cho sự hình thành của Cơ sinh học hiện đại
Tóm tắt
Việc hình thành một cơ thể hoàn chỉnh yêu cầu sự phối hợp của nhiều quá trình ở các cấp độ tổ chức khác nhau của vật chất sống. Phần lớn các nhà sinh học hiện đại tuân thủ khái niệm định mệnh di truyền, theo đó các đặc điểm của sinh vật được mã hóa trong gen của chúng. Vấn đề còn bỏ ngỏ là cách mà các sản phẩm của gen tạo ra một cơ thể hoàn chỉnh và duy trì sự sống cho nó. Vào thập niên 1970 và 1980, một số nhóm nghiên cứu đã độc lập gợi ý rằng các lực và ứng suất cơ học có thể tích hợp các phần của cơ thể thành một hệ thống thống nhất. Vào đầu thế kỷ 20 và 21, rõ ràng rằng các tính chất cơ học của các cơ quan và mô có thể ảnh hưởng đến việc thực hiện thông tin được mã hóa trong gen.
Từ khóa
#cơ sinh học #tính chất cơ học #quá trình sinh học #lập trình di truyền #tổ chức sốngTài liệu tham khảo
Alonso, J.L. and Goldmann, W.H., Cellular mechanotransduction, AIMS Biophys., 2016, vol. 3, no. 1, pp. 50–62.
Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., and Piccolo, S., A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors, Cell, 2013, vol. 154, no. 5, pp. 1047–1059.
Aureille, J., Belaadi, N., and Guilluy, C., Mechanotransduction via the nuclear envelope: a distant reflection of the cell surface, Curr. Opin. Cell Biol., 2017, no. 44, pp. 59–67.
Belintsev, B.N., Beloussov, L.V., and Zaraisky, A.G., Model of pattern formation in epithelial morphogenesis, J. Theor. Biol., 1987, vol. 129, no. 4, pp. 369–94.
Beloussov, L.V., Formation and cellular structure of the lines of tension in the axial rudimenta of amphibian embryos, Ontogenez, 1978, vol. 9, no. 2, pp. 124–130.
Beloussov, L.V., Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields, Int. J. Dev. Biol., 1997, vol. 41, no. 6, pp. 771–779.
Beloussov, L.V., Osnovy obshchei embriologii (Fundamentals of General Embryology), Moscow: Izd. Mosk. Gos. Univ. Nauka, 2005.
Beloussov, L.V., Self-organization, symmetry and morphomechanics in development of organisms, in Embryology—Updates and Highlights on Classic Topics, Pereira, L.A.V., Ed., London: IntechOpen, 2012, pp. 189–210.
Beloussov, L.V., Morphogenetic Fields, in History and Relations to Other Concepts, Fields of the Cell, Fels, D., Cifra, M., and Scholkmann, F., Eds., Kerala, India: Res. Signpost, 2015, pp. 271–282.
Beloussov, L.V. and Grabovsky, V.I., Morphomechanics: goals, basic experiments and models, Int. J. Dev. Biol., 2006, vol. 50, nos. 2–3, pp. 81–92.
Beloussov, L.V., Dorfman, Ya.G., and Cherdantzev, V.G., Rapid changes in the shape and cellular architecture of isolated fragments of amphibian embryonic tissues as an experimental model of morphogenesis, Ontogenez, 1974, vol. 5, no. 4, pp. 323–333.
Beloussov, L.V., Dorfman, I.G., and Cherdantzev, V.G., Mechanical stresses and morphological patterns in amphibian embryos, J. Embryol. Exp. Morphol., 1975, vol. 34, no. 34, pp. 559–574.
Beloussov, L.V., Dorfman, I.G., and Cherdantzev, V.G., Patterns of mechanical stress at the successive stages of early development of frog, Ontogenez, 1976, vol. 7, no. 2, pp. 115–122.
Beloussov, L.V., Lakirev, A.V., Naumidi, I.I., and Novoselov, V.V., Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopus laevis embryos, Int. J. Dev. Biol., 1990, vol. 34, no. 4, pp. 409–419.
Beloussov, L.V. and Luchinskaia, N.N., Biomechanical feedback in morphogenesis, as exemplified by stretch responses of amphibian embryonic tissues, Biochem. Cell Biol., 1995, vol. 73, nos. 7–8, pp. 555–563.
Beloussov, L.V., Luchinskaya, N.N., and Zaraiskii, A.G., Tensotaxis—the collective movement of embryonic cells up along the gradients of mechanical tensions, Ontogenez, 1999, vol. 30, no. 3, pp. 220–228.
Beloussov, L.V., Luchinskaya, N.N., Ermakov, A. S., and Glagoleva, N.S., Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events, Int. J. Dev. Biol., 2006, vol. 50, nos. 2–3, pp. 113–122.
Blechschmidt, E. and Gasser, R.F., Biokinetics and Biodynamics of Human Differentiation, Springfield Illinois, USA: Ch. C. Thomas Publ., 1978 (Reprint Ed., 2012).
Chen, C.S. and Ingber, D.E., Tensegrity and mechanoregulation: from skeleton to cytoskeleton, Osteoarthritis Cartilage, 1999, vol. 7, no. 1, pp. 81–94.
Costa, M., Sweeton, D., and Wieschaus, E., Gastrulation in Drosophila: cellular mechanisms of morphogenetic movements, in The Development of Drosophila Melanogaster. Cold Spring Harbor, Bate, M. and Martinez-Arias, A., Eds., New York: Cold Spring Harbor Laboratory Press, 1993, pp. 425–464.
Cui, Y. and Bustamante, C., Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 1, pp. 127–132.
Desprat, N., Supatto, W., Pouille, P.A., Beaurepaire, E., and Farge, E., Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos, Dev. Cell, 2008, vol. 15, no. 3, pp. 470–477.
Donnaloja, F., Jacchetti, E., Soncini, M., and Raimondi, M.T., Mechanosensing at the nuclear envelope by nuclear pore complex stretch activation and its effect in physiology and pathology, Front. Physiol., 2019, vol. 10, p. 896.
Driesch, H., Entwicklungsmechanische Studien. I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwicklung. Experimentelle Erzeugung von Theilund Doppelbildungen, Z. Wiss. Zool., 1891, no. 53, pp. 160–184.
Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., Elvassore, N., and Piccolo, S., Role of YAP/TAZ in mechanotransduction, Nature, 2011, vol. 8, no. 474, pp. 179–183.
Ermakov, A.S., The theory of tensegrity and spatial organization of living matter, Russ. J. Dev. Biol., 2018a, no. 49, pp. 87–100.
Ermakov, A.S., Professor Lev Beloussov and the birth of morphomechanics, Biosystems, 2018b, no. 173, pp. 26–35.
Ermakov, A.S. and Beloussov, L.V., Morphogenetic and differentiation sequelae to relaxation of mechanical tensions in Xenopus laevis blastula, Ontogenez, 1998, vol. 29, no. 6, pp. 450–458.
Farge, E., Mechanical induction of twist in the Drosophila foregut/stomodeal primordium, Curr. Biol., 2003, vol. 13, no. 16, pp. 1365–1377.
Fuller, R.B., Tensegrity, Portfolio Art News Annu., 1961, no. 4, pp. 112–127.
Guilluy, C. and Burridge, K., Nuclear mechanotransduction: forcing the nucleus to respond, Nucleus, 2015, vol. 6, no. 1, pp. 19–22.
Gurwitsch, A.G., Die Vererbung als Verwircklichungsvorgang, Biol. Zentralbl., 1912, no. 22, pp. 458–486.
Gurwitsch, A.G., Teoriya biologicheskogo polya (Theory of the Biological Field), Moscow: Sov. Nauka, 1944.
Harris, A.K., Behavior of cultured cells on substrata of variable adhesiveness, Exp. Cell Res., 1973, vol. 77, no. 1, pp. 285–297.
Harris, A.K., Stopak, D., and Warner, P., Generation of spatially periodic patterns by a mechanical instability: A mechanical alternative to the Turing model, J. Embryol. Exp. Morphol., 1984, no. 80, pp. 1–20.
Harris, A.K., Stopak, D., and Wild, D.P., Fibroblast traction as a mechanism for collagen morphogenesis, Nature, 1981, vol. 290, no. 5803, pp. 249–251.
His, W., On the principles of animal morphology, Proc. R. Soc. Edinburgh, 1888, no. 15, pp. 287–298.
Ingber, D.E., Cellular tensegrity: Defining new rules of biological design that govern the cytoskeleton, J. Cell Sci., 1993, vol. 104, no. 3, pp. 613–627.
Ingber, D.E., Tensegrity I. Cell structure and hierarchical systems biology, J. Cell Sci., 2003a, vol. 116, no. 7, pp. 1157–1173.
Ingber, D.E., Tensegrity II. How structural networks influence cellular information processing networks, J. Cell Sci., 2003b, vol. 116, no. 8, pp. 1397–1408.
Ingber, D.E., Madri, J.A., and Jamieson, J.D., Role of basal lamina in the neoplastic disorganization of tissue architecture, Proc. Natl. Acad. Sci. U. S. A., 1981, vol. 78, no. 6, pp. 3901–3905.
Kirby, T.J. and Lammerding, J., Emerging views of the nucleus as a cellular mechanosensor, Nat. Cell Biol., 2018, no. 20, pp. 373–381.
Lakirev, A.V., Belousov, L.V., and Naumidi, I.I., Effect of external tensions on tissue differentiation in embryos of the clawed toad in vitro, Ontogenez, 1988, vol. 19, no. 6, pp. 591–600.
Leptin, M., Gastrulation in Drosophila: The logic and the cellular mechanisms, EMBO J., 1999, no. 18, pp. 3187–3192.
Liedl, T., Högberg, B., Tytell, J., Ingber, D.E., and Shih, W.M., Self-assembly of three dimensional prestressed tensegrity structures from DNA, Nat. Nanotechnol., 2010, vol. 5, no. 7, pp. 520–524.
Mammoto, T., Mammoto, A., and Ingber, D.E., Mechanobiology and developmental control, Annu. Rev. Cell Dev. Biol., 2013, vol. 29, pp. 27–61.
Martino, F., Perestrelo, A.R., Vinarský, V., Pagliari, S., and Forte, G., Cellular mechanotransduction: From tension to function, Front. Physiol., 2018, no. 9.
Nusslein-Volhard, C., Coming to Life: How Genes Drive Development, Kales Press, 2006.
De Robertis, E.M., Morita, E.A., and Cho, K.W., Gradient fields and homeobox genes, Development, 1991, vol. 112, no. 3, pp. 669–678.
Roux, W., Beiträge zur Entwickelungsmechanik des Embryo. Über die künstliche Hervorbringung halber Embryonen durch Zerstörung einer der beiden ersten Furchungskugeln, sowie über die Nachentwickelung (Postgeneration) der fehlenden Körperhälfte, in Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, 1888, pp. 113–153.
Schneider, R. and Grosschedl, R., Dynamics and interplay of nuclear architecture, genome organization, and gene expression, Genes Dev., 2007, no. 21, pp. 3027–3043.
Szczepińska, T., Rusek, A.M., and Plewczynski, D., Intermingling of chromosome territories genes chromosomes, Cancer, 2019, no. 7, pp. 500–506.
Uhler, C. and Shivashankar, G.V., Regulation of genome organization and gene expression by nuclear mechanotransduction, Nat. Rev. Mol. Cell Biol., 2017, no. 12, pp. 717–727.
Wada, K., Itoga, K., Okano, T., Yonemura, S., and Sasaki, H., Hippo pathway regulation by cell morphology and stress fibers, Development, 2011, vol. 138, no. 18, pp. 3907–3914.
Wang, N., Tytell, J.D., and Ingber, D.E., Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus, Nat. Rev. Mol. Cell Biol., 2009, vol. 10, no. 1, pp. 75–82.
Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., and Seeman, N.C., From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal, Nature, 2009, vol. 461, no. 7260, pp. 74–77.
