Preparing the HoloLens for user Studies: an Augmented Reality Interface for the Spatial Adjustment of Holographic Objects in 3D Indoor Environments

KN - Journal of Cartography and Geographic Information - Tập 69 Số 3 - Trang 205-215 - 2019
J. Mark Keil1, Dennis Edler1, Frank Dickmann1
1Geomatics/Cartography Group, Geography Department, Ruhr University Bochum, Bochum, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahlqvist O (2011) Converging themes in cartography and computer games. Cartogr Geogr Inf Sci 38(3):278–285. https://doi.org/10.1559/15230406382278

Bestgen AK, Edler D, Müller C, Schulze P, Dickmann F, Kuchinke L (2017) Where is it (in the map)? Recall and recognition of spatial information. Cartographica 52(1):80–97. https://doi.org/10.3138/cart.52.1.3636

Bröhmer K, Knust C, Dickmann F, Buchroithner MF (2013) Z-Axis based visualization of map elements—cartographic experiences with 3D monitors using lenticular foil technology. Cartogr J 50:211–217

Buchroithner MF (2007) Echtdreidimensionalität in der Kartographie: Gestern, heute und morgen. Kartogr Nachrichten 57(5):239–248

Clarke KC, Johnson MJ, Trainor T (2019) Contemporary American cartographic research: a review and prospective. Cartogr Geogr Inf Sci 46(3):196–209. https://doi.org/10.1080/15230406.2019.1571441

Cöltekin A, Oprean D, Wallgrün JO, Klippel UA (2019) Where are we now? Re-visiting the digital earth through human-centered virtual and augmented reality geovisualization environments. Int J Digit Earth 12(2):119–122. https://doi.org/10.1080/17538947.2018.1560986

Corbett J, Wade K (2005) Player perspective: using computer game engines for 3D cartography. Cartographica 40(3):113–120. https://doi.org/10.3138/8443-505Q-M8T1-1774

de Almeida Pereira GH, Stock K, Stamato Delazari L, Centeno JAS (2017) Augmented reality and maps: new possibilities for engaging with geographic data. Cartogr J 54(4):313–321. https://doi.org/10.1080/00087041.2017.1411417

Dickmann F (2013) Freiraum-displays—Ein neues Medium für die Kartographie? Kartogr Nachrichten 63(2/3):89–92

Dickmann F, Edler D, Bestgen AK, Kuchinke L (2017) Exploiting illusory grid lines for object-location memory performance in urban topographic maps. Cartogr J 54(3):242–253. https://doi.org/10.1080/00087041.2016.1236509

Dickmann F, Keil J, Kuner J, Edler D (2019) Quadratische Gitterzellen in Topographischen Karten erhöhen die Genauigkeit von Distanzschätzungen. KN J Cartogr Geogr Inf 69(2):109–120. https://doi.org/10.1007/s42489-019-00014-2

DiVerdi S, Olwal A, Rakkolainen I, Höllerer T (2008) An immaterial pseudo-3D display system with 3D interaction. In: Ozaktas HM, Onural L (eds) Three-dimensional television: capture, transmission, and display. Springer, Heidelberg, pp 505–528

Edler D, Dickmann F (2015) Elevating streets in urban topographic maps improves the speed of map-reading. Cartographica 50(4):217–223. https://doi.org/10.3138/cart.50.4.3131

Edler D, Dickmann F (2017) The impact of 1980s and 1990s video games on multimedia cartography. Cartographica 52(2):168–177. https://doi.org/10.3138/cart.52.2.3823

Edler D, Bestgen AK, Kuchinke L, Dickmann F (2014) Grids in topographic maps reduce distortions in the recall of learned object locations. PLoS ONE 9(5):e98148. https://doi.org/10.1371/journal.pone.0098148

Edler D, Bestgen AK, Kuchinke L, Dickmann F (2015) True-3D accentuating of grids and streets in urban topographic maps enhances human object location memory. PLoS ONE 10(2):e0116959. https://doi.org/10.1371/journal.pone.0116959

Edler D, Husar A, Keil J, Vetter M, Dickmann F (2018a) Virtual reality (VR) and open source software: a workflow for constructing an interactive cartographic VR environment to explore urban landscapes. Kartogr Nachrichten 68(1):3–11

Edler D, Keil J, Bestgen AK, Kuchinke L, Dickmann F (2018b) Hexagonal map grids—an experimental study on the performance in memory of object locations. Cartogr Geogr Inf Sci. https://doi.org/10.1080/15230406.2018.1496035

Edler D, Keil J, Dickmann F (2018c) Varianten interaktiver Karten in Video- und Computerspielen - eine Übersicht. Kartogr Nachrichten 68(2):57–65

Edler D, Kühne O, Keil J, Dickmann F (2019) Audiovisual cartography: established and new multimedia approaches to represent soundscapes. KN J Cartogr Geogr Inf. https://doi.org/10.1007/s42489-019-00004-4

Evans G, Miller J, Pena MI, MacAllister A, Winer EH (2017) Evaluating the Microsoft HoloLens through an augmented reality assembly application. In: Sanders-Reed JN and Arthur JJ (eds) Degraded environments: sensing, processing, and display. SPIE, Bellingham, Washington: Proceedings of SPIE 10197. https://doi.org/10.1117/12.2262626

Gruenefeld U, Hsiao D, Heuten W, Boll S (2017) EyeSee: beyond reality with Microsoft Hololens. In: Simeone AL (ed) Proceedings of the 5th symposium on spatial user interaction. ACM, New York, p 148. https://doi.org/10.1145/3131277.3134362

Harders M, Bianchi G, Knoerlein B, Székely G (2008) Calibration, registration, and synchronization for high precision augmented reality haptics. IEEE Trans Vis Comput Graph 15(1):138–149. https://doi.org/10.1109/TVCG.2008.63

Hruby F (2019) The sound of being there—audiovisual cartography with immersive virtual environments. KN J Cartogr Geogr Inf. https://doi.org/10.1007/s42489-019-00003-5

Hruby F, Ressl R, de la Borbolla del Valle G (2019) Geovisualization with immersive virtual environments in theory and practice. Int J Digit Earth 12(2):123–136

HTC (2019) VIVE Pro HMD support. https://www.vive.com/us/support/vive-pro-hmd/ . Accessed 12 Mar 2019

Jarvenpaa HM, Makinen SJ (2008) An empirical study of the existence of the Hype Cycle: a case of DVD technology. IEEE international engineering management conference. IEEE, Piscataway, pp 1–5. https://doi.org/10.1109/IEMCE.2008.4617999

Keil J, Mocnik FB, Edler D, Dickmann F, Kuchinke L (2018) Reduction of map information regulates visual attention without affecting route recognition performance. ISPRS Int J Geoinf 7(12):1–13. https://doi.org/10.3390/ijgi7120469

Keil J, Edler D, Dickmann F, Kuchinke L (2019) Meaningfulness of landmark pictograms reduces visual salience and recognition performance. Appl Ergon 75:214–220. https://doi.org/10.1016/j.apergo.2018.10.008

Kersten T, Deggim S, Tschirschwitz F, Lindstaedt MU, Hinrichsen N (2018) Segeberg 1600—Eine Stadtrekonstruktion in virtual reality. Kartogr Nachrichten 68(4):183–191

Knust C, Buchroithner MF (2014) Principles and terminology of true-3D geovisualisation. Cartogr J 51(3):191–202. https://doi.org/10.1179/1743277413Y.0000000038

Kraak MJ (1999) Cartography and the use of animation. In: Cartwright W, Peterson MP, Gartner G (eds) Multimedia cartography. Springer, Berlin, pp 317–326

Krygier JB (1994) Sound and geographic visualization. In: Taylor DRF, MacEachren AM (eds) Visualization in modern cartography. Pergamon, Oxford, pp 149–166

Kuchinke L, Dickmann F, Edler D, Bordewieck M, Bestgen AK (2016) The processing and integration of map elements during a recognition memory task is mirrored in eye-movement patterns. J Environ Psychol 47:213–222. https://doi.org/10.1016/j.jenvp.2016.07.002

Li R, Korda A, Radtke M, Schwering A (2014) Visualising distant off-screen landmarks on mobile devices to support spatial orientation. J Locat Based Serv 8(3):166–178. https://doi.org/10.1080/17489725.2014.978825

Liu F, Shu P, Jin H, Ding L, Yu J, Niu D, Li B (2013) Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications. IEEE Wirel Commun 20(3):14–22. https://doi.org/10.1109/MWC.2013.6549279

Liu Y, Dong H, Zhang L, Saddik AE (2018) Technical evaluation of HoloLens for multimedia: a first look. IEEE Multimed 25(4):8–18. https://doi.org/10.1109/MMUL.2018.2873473

Loesch B, Christen M, Wüest R, Nebiker S (2015) Geospatial augmented reality—Lösungsansätze mit natürlichen Markern für die Kartographie und die Geoinformationsvisualisierung im Außenraum. In: Kersten TP (ed) Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V. DGPF, Münster, pp 89–97

Müller JC (1997) GIS, Multimedia und die Zukunft der Kartographie. Kartogr Nachrichten 47(2):41–51

Ng AKT, Chan LKY, Lau HYK (2017) A low-cost lighthouse-based virtual reality head tracking system. In: International conference on 3D immersion (IC3D). IEEE, Brussels, pp 1–5. https://doi.org/10.1109/IC3D.2017.8251910

Noor AK (2016) The Hololens revolution. Mech Eng 138(10):30–35. https://doi.org/10.1115/1.2016-Oct-1

Peterson MP (1995) Interactive and animated cartography. Prentice Hall, Englewood Cliffs

Plumert JM, Kearney JK, Cremer JF, Recker K (2005) Distance perceptions in real und virtual environments. ACM Trans Appl Percept 2(3):216–233. https://doi.org/10.1145/1077399.1077402

Postma A, De Haan EHF (1996) What was where? Memory for object locations. Q J Exp Psychol A 49(1):178–199. https://doi.org/10.1080/713755605

Ruddle RA, Volkova E, Mohler B, Bülthoff HH (2011) The effect of landmark and body-based sensory information on route knowledge. Mem Cogn 39(4):686–699. https://doi.org/10.3758/s13421-010-0054-z

Taylor DRF (2005) The theory and practice of cybercartography: an introduction. In: Taylor DRF (ed) Cybercartography: theory and practice. Elsevier, Amsterdam, pp 1–13

Taylor DRF, Lauriault TP (2007) Future directions for multimedia cartography. In: Cartwright W, Peterson MP, Gartner G (eds) Multimedia cartography, 2nd edn. Springer, Berlin, pp 505–522

Wang W, Wu X, Chen G, Chen Z (2018) Holo3DGIS: leveraging Microsoft HoloLens in 3D geographic information. ISPRS Int J Geo Inf 7(2):1–16. https://doi.org/10.3390/ijgi7020060

Zhao B, Chen Q (2017) Location spoofing in a location-based game: a case study of Pokémon Go. In: Peterson MP (ed) Advances in cartography and GI science. Selections from the international cartographic conference 2017. Springer, Cham, pp 21–32