Chuẩn bị vật liệu anot LiNi1/3Co1/3Mn1/3O2 phủ Fe2O3 với hiệu suất điện hóa cải thiện thông qua quá trình phân hủy nhiệt của citrat sắt

Journal of Materials Science - Tập 54 - Trang 4202-4211 - 2018
Yike Lei1,2, Yonghu Li1,2, Hongyu Jiang1,2, Chunyan Lai1,2
1Shanghai University of Electric Power, Shanghai, People’s Republic of China
2Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai, People’s Republic of China

Tóm tắt

Vật liệu LiNi1/3Co1/3Mn1/3O2 (NCM111-Fe) được phủ lớp Fe2O3 đã được chế tạo thành công thông qua phản ứng kết tủa đồng thời được hỗ trợ bởi quá trình phân hủy nhiệt của citrat sắt. Cấu trúc tinh thể, hình thái và tình trạng nguyên tố của các mẫu đã được nghiên cứu bằng các phương pháp XRD, SEM, TEM và XPS. NCM111 được phủ lớp Fe2O3 sau quá trình phân hủy nhiệt của citrat sắt, và sự tồn tại của lớp Fe2O3 không làm thay đổi cấu trúc tinh thể nguyên bản của NCM111. Trong khoảng từ 3.0 đến 4.8 V, NCM111-Fe cung cấp dung lượng ban đầu là 192.5 mA h g−1 tại tốc độ 0.1 C và 86.7% dung lượng vẫn còn lại sau 100 chu kỳ. Ngược lại, NCM111 thể hiện dung lượng ban đầu là 187 mA h g−1 và chỉ còn lại 63.5% sau 100 chu kỳ. Kết quả cho thấy NCM111-Fe thể hiện độ phân cực yếu hơn, điện trở truyền tải điện nhỏ hơn và hiệu suất điện hóa tốt hơn so với mẫu nguyên bản.

Từ khóa

#LiNi1/3Co1/3Mn1/3O2 #Fe2O3 #hiệu suất điện hóa #citrat sắt #phân hủy nhiệt #vật liệu điện cực

Tài liệu tham khảo

Ilango PR, Subburaj T, Prasanna K, Jo YN, Lee CW (2015) Physical and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathodes coated by Sb2O3 using a sol–gel process. Mater Chem Phys 158:45–51. https://doi.org/10.1016/j.matchemphys.2015.03.033 Yao Y, Liu H, Li G, Peng H, Chen K (2013) Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. Electrochim Acta 113:340–345. https://doi.org/10.1016/j.electacta.2013.09.071 Huang Z, Wang Z, Zheng X, Guo H, Li X, Jing Q, Yang Z (2015) Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim Acta 182:795–802. https://doi.org/10.1016/j.electacta.2015.09.151 Wang C, Chen L, Zhang H, Yang Y, Wang F, Yin F, Yang G (2014) Li2ZrO3 coated LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium batteries. Electrochim Acta 119:236–242. https://doi.org/10.1016/j.electacta.2013.12.038 Ding Y, Zhang P, Gao D (2008) Synthesis and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]0.96Ti0.04O1.96F0.04 as cathode material for lithium-ion batteries. J Alloys Compd 456:344–347. https://doi.org/10.1016/j.jallcom.2007.02.074 Liang Y, Wen K, Mao Y, Liu Z, Zhu G, Yang F, He W (2015) Shape and size control of LiFePO4 for high-performance lithium-ion batteries. ChemElectroChem 2:1227–1237. https://doi.org/10.1002/celc.201500114 Lv W, Niu Y, Jian X, Zhang K, Wang W, Zhao J, Wang Z, Yang W, He W (2016) Space matters: Li+ conduction versus strain effect at FePO4/LiFePO4 interface. Appl Phys Lett 108:083901. https://doi.org/10.1063/1.4942849 Wang Z, Liu L, Chen L, Huang X (2002) Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ion 148:335–342. https://doi.org/10.1016/S0167-2738(02)00071-1 Qiu Q, Huang X, Chen Y, Tan Y, Lv W (2014) Al2O3 coated LiNi1/3Co1/3Mn1/3O2 cathode material by sol–gel method: preparation and characterization. Ceram Int 40:10511–10516. https://doi.org/10.1016/j.ceramint.2014.03.023 Lin Y, Lu C (2009) Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3−yAlyO2. J Power Sources 189:353–358. https://doi.org/10.1016/j.jpowsour.2008.08.072 Lu M, Han E, Zhu L, Chen S, Zhang G (2016) The effects of Ti4+–Fe3+ co-doping on Li[Ni1/3Co1/3Mn1/3]O2. Solid State Ion 298:9–14. https://doi.org/10.1016/j.ssi.2016.10.014 Baboo JP, Park H, Song J, Kim S, Jo J, Pham DT, Mathew V, Xiu Z, Kim J (2017) Facile redox synthesis of layered LiNi1/3Co1/3Mn1/3O2 for rechargeable Li-ion batteries. Electrochim Acta 224:243–250. https://doi.org/10.1016/j.electacta.2016.12.050 Wang L, Ma Y, Qu Y, Cheng X, Zuo P, Du C, Gao Y, Yin G (2016) Influence of fluoroethylene carbonate as co-solvent on the high-voltage performance of LiNi1/3Co1/3Mn1/3O2 cathode for lithium-ion batteries. Electrochim Acta 191:8–15. https://doi.org/10.1016/j.electacta.2016.01.032 Liu X, Li H, Li D, Ishida M, Zhou H (2013) PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:374–380. https://doi.org/10.1016/j.jpowsour.2013.06.037 Cui Y, Xu S (2015) High tap density of Ni3(PO4)2 coated LiNi1/3Co1/3Mn1/3O2 with enhanced cycling performance at high cut-off voltage. J Chem Eng 23:315–320. https://doi.org/10.1016/j.cjche.2014.03.001 Guo X, Cong L, Zhao Q, Tai L, Wu X, Zhang J, Wang R, Xie H, Sun L (2015) Enhancement of electrochemical performance of LiNi1/3Co1/3Mn1/3O2 by surface modification with MnO2. J Alloys Compd 651:12–18. https://doi.org/10.1016/j.jallcom.2015.06.270 Zhu G, Wen K, Lv W, Zhou X, Liang Y, Yang F, Chen Z, Zou M, Li J, Zhang Y, He W (2015) Materials insights into low-temperature performances of lithium-ion batteries. J Power Sources 300:29–40. https://doi.org/10.1016/j.jpowsour.2015.09.056 Ye L, Wen K, Zhang Z, Yang F, Liang Y, Lv W, Lin Y, Gu J, Dickerson JH, He W (2016) Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices. Adv Energy Mater 6:1502018. https://doi.org/10.1002/aenm.201502018 Han Z, Yu J, Zhan H, Liu X, Zhou Y (2014) Sb2O3-modified LiNi1/3Co1/3Mn1/3O2 material with enhanced thermal safety and electrochemical property. J Power Sources 254:106–111. https://doi.org/10.1016/j.jpowsour.2013.11.126 Wu F, Wang M, Su Y, Chen S (2009) Surface modification of LiNi1/3Co1/3Mn1/3O2 with Y2O3 for lithium-ion battery. J Power Sources 189:743–747. https://doi.org/10.1016/j.jpowsour.2008.08.014 Yang Z, Guo X, Xiang W, Hua W, Zhang J, He F, Wang K, Xiao Y, Zhong B (2017) K-doped layered LiNi0.5Co0.2Mn0.3O2 cathode material: towards the superior rate capability and cycling performance. J Alloys Compd 699:358–365. https://doi.org/10.1016/j.jallcom.2016.11.245 Park S-H, Oh SW, Sun Y-K (2005) Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3−2xMox]O2 cathode materials by ultrasonic spray pyrolysis. J Power Sources 146:622–625. https://doi.org/10.1016/j.jpowsour.2005.03.078 Ding Y, Zhang P, Long Z, Jiang Y, Xu F (2009) Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning. J Alloys Compd 487:507–510. https://doi.org/10.1016/j.jallcom.2009.08.002 Ding Y, Zhang P, Jiang Y, Yin J, Lu Q, Gao D (2008) Synthesis and electrochemical properties of LiNi0.375Co0.25Mn0.375−xCrxO2−xFx cathode materials prepared by sol–gel method. Mater Res Bull 43:2005–2009. https://doi.org/10.1016/j.materresbull.2007.10.009 He Y, Pei L, Liao X, Ma Z (2007) Synthesis of LiNi1/3Co1/3Mn1/3O2−zFz cathode material from oxalate precursors for lithium ion battery. J Fluor Chem 128:139–143. https://doi.org/10.1016/j.jfluchem.2006.11.002 Cong L, Zhao Q, Wang Z, Zhang Y, Wu X, Zhang J, Wang R, Xie H, Sun L (2016) (PO4)3− polyanions doped LiNi1/3Co1/3Mn1/3O2: an ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries. Electrochim Acta 201:8–19. https://doi.org/10.1016/j.electacta.2016.03.088 Shi S, Tu J, Tang Y, Zhang Y, Liu X, Wang X, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–346. https://doi.org/10.1016/j.jpowsour.2012.10.065 Hu S, Cheng G, Cheng M, Hwang B, Santhanam R (2009) Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Power Sources 188:564–569. https://doi.org/10.1016/j.jpowsour.2008.11.113 Wang W, Yin Z, Wang J, Wang Z, Li X, Guo H (2015) Effect of heat-treatment on Li2ZrO3-coated LiNi1/3Co1/3Mn1/3O2 and its high voltage electrochemical performance. J Alloys Compd 651:737–743. https://doi.org/10.1016/j.jallcom.2015.08.114 Liu X, Li H, Yoo E, Ishida M, Zhou H (2012) Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ion batteries. Electrochim Acta 83:253–258. https://doi.org/10.1016/j.electacta.2012.07.111 Hankhuntod A, Kantarak E, Sroila W, Kumpika T, Singjai P, Thongsuwan W (2017) α-Fe2O3 modified TiO2 nanoparticulate films prepared by sparking off Fe electroplated Ti tips. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2017.11.224 Mohan R, Paulose R (2018) An efficient electrochemical performance of Fe2O3/CNT nanocomposite coated dried Lagenaria siceraria shell electrode for electrochemical capacitor. Ceram Int 44:10990–10993. https://doi.org/10.1016/j.ceramint.2018.03.154 Nguyen T-A, Lee S-W (2017) Green synthesis of N-doped carbon modified iron oxides (N-Fe2O3@Carbon) using sustainable gelatin cross-linker for high performance Li-ion batteries. Electrochim Acta 248:37–45. https://doi.org/10.1016/j.electacta.2017.07.114 Ren W, Liu D, Sun C, Yao X, Tan J, Wang C, Zhao K, Wang X, Li Q, Mai L (2018) Nonhierarchical heterostructured Fe2O3/Mn2O3 porous hollow spheres for enhanced lithium storage. Small 14:e1800659. https://doi.org/10.1002/smll.201800659 Li J, Xu Y, Li X, Zhang Z (2013) Li2MnO3 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries. Appl Surf Sci 285:235–240. https://doi.org/10.1016/j.apsusc.2013.08.042 Machida N, Kashiwagi J, Naito M, Shigematsu T (2012) Electrochemical properties of all-solid-state batteries with ZrO2-coated LiNi1/3Co1/3Mn1/3O2 as cathode materials. Solid State Ion 225:354–358. https://doi.org/10.1016/j.ssi.2011.11.026 He R, Zhang L, Yan M, Gao Y, Liu Z (2016) Effects of Cr2O3-modified LiNi1/3Co1/3Mn1/3O2 cathode materials on the electrochemical performance of lithium-ion batteries. J Mater Sci 52:4599–4607. https://doi.org/10.1007/s10853-016-0704-z Gong C, Lv W, Qu L, Bankole OE, Li G, Zhang R, Hu M, Lei L (2014) Syntheses and electrochemical properties of layered Li0.95Na0.05Ni1/3Co1/3Mn1/3O2 and LiNi1/3Co1/3Mn1/3O2. J Power Sources 247:151–155. https://doi.org/10.1016/j.jpowsour.2013.08.081 Pan X, Duan X, Lin X, Zong F, Tong X, Li Q, Wang T (2018) Rapid synthesis of Cr-doped γ-Fe2O3/reduced graphene oxide nanocomposites as high performance anode materials for lithium ion batteries. J Alloys Compd 732:270–279. https://doi.org/10.1016/j.jallcom.2017.10.222 Xiaomin M, Ruijun W (2012) One-pot synthesis of novel energy materials: sub-micron Fe2O3 encapsuled carbon spheres core–shell composite. Energy Procedia 17:1585–1590. https://doi.org/10.1016/j.egypro.2012.02.285 Zhou Y, Bai P, Tang H, Zhu J, Tang Z (2016) Chemical deposition synthesis of desirable high-rate capability Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a lithium ion battery cathode material. J Electroanal Chem 782:256–263. https://doi.org/10.1016/j.jelechem.2016.10.049 Chen C, Geng T, Du C, Zuo P, Cheng X, Ma Y, Yin G (2016) Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources 331:91–99. https://doi.org/10.1016/j.jpowsour.2016.09.051 Wang W, Yin Z, Wang Z, Li X, Guo H (2015) Effect of heat-treatment on electrochemical performance of Li3VO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials. Mater Lett 160:298–301. https://doi.org/10.1016/j.matlet.2015.07.160 Zhang X, Chen Z, Schwarz B, Sigel F, Ehrenberg H, An K, Zhang Z, Zhang Q, Li Y, Li J (2017) Kinetic characteristics up to 4.8 V of layered LiNi1/3Co1/3Mn1/3O2 cathode materials for high voltage lithium-ion batteries. Electrochim Acta 227:152–161. https://doi.org/10.1016/j.electacta.2017.01.014 Liu X, He P, Li H, Ishida M, Zhou H (2013) Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer. J Alloys Compd 552:76–82. https://doi.org/10.1016/j.jallcom.2012.10.090 Chen Y, Zhang Y, Chen B, Wang Z, Lu C (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20–27. https://doi.org/10.1016/j.jpowsour.2014.01.061 Luo Z, Sun Y, Liu H (2015) Electrochemical performance of a nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 cathode material. Chin Chem Lett 26:1403–1408. https://doi.org/10.1016/j.cclet.2015.06.007 Zheng J, Zhou W, Ma Y, Jin H, Guo L (2015) Combustion synthesis of LiNi1/3Co1/3Mn1/3O2 powders with enhanced electrochemical performance in LIBs. J Alloys Compd 635:207–212. https://doi.org/10.1016/j.jallcom.2015.02.114 Du K, Huang J, Cao Y, Peng Z, Hu G (2013) Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries. J Alloys Compd 574:377–382. https://doi.org/10.1016/j.jallcom.2013.05.134 Yuan X, Xu Q, Wang C, Liu X, Liu H, Xia Y (2015) A facile and novel organic coprecipitation strategy to prepare layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high capacity and excellent cycling stability. J Power Sources 279:157–164. https://doi.org/10.1016/j.jpowsour.2014.12.148 Du Q, Tang Z, Ma X, Zang Y, Sun X, Shao Y, Wen Z, Chen C (2015) Improving the electrochemical properties of high-energy cathode material LiNi0.5Co0.2Mn0.3O2 by Zr doping and sintering in oxygen. Solid State Ion 279:11–17. https://doi.org/10.1016/j.ssi.2015.07.006 Okada K, Machida N, Naito M, Shigematsu T, Ito S, Fujiki S, Nakano M, Aihara Y (2014) Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics 255:120–127. https://doi.org/10.1016/j.ssi.2013.12.019