Preparation, structure and electrical properties of La1−xBaxCrO3 NTC ceramics

Journal of Materials Science: Materials in Electronics - Tập 28 - Trang 18873-18878 - 2017
Mingxing Chen1,2, Huimin Zhang1, Ting Liu1,2, Hui Jiang1, Aimin Chang1
1Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry of CAS, Urumqi, China
2University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

The La1−xBaxCrO3 (x = 0–0.2) negative temperature coefficient (NTC) ceramics have been prepared by the traditional solid-state reaction method at 1600 °C. Scanning electron microscope images show that the doping of Ba2+ contributes to the increase in the density. X-ray diffraction analysis has revealed that the sintered ceramics crystallize in a single perovskite structure. X-ray photoelectron spectroscopy analysis confirm the existence of Cr3+ and Cr6+ ions on lattice sites, which result in hopping conduction. The presence of the Cr3+ and Cr6+ ions is one of the significant factors that affect the electrical conductivity of La1−xBaxCrO3 ceramics. The resistance of NTC thermistors decreases with the increase of Ba content as a result of the enhancement of Cr6+ Concentration. The obtained values of ρ −50, B −50/−25 and E a are in the range of 49.278–1.9839 × 105 Ω cm, 1767.4–3496.9 K, 0.1523–0.3013 eV, respectively.

Tài liệu tham khảo

A. Bonet, M. Baben, N. Travitzky, P. Greil, J. Am. Ceram. Soc. 99, 917 (2016) H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, J. Electrochem. Soc. 138, 1018 (1991) J. Sfeir, J. Power Sources 118, 276 (2003) Y. Ito, K. Wakisaka, H. Kado, S. Yoshikado, Key Eng. Mater. 301, 171 (2006) Z. Han, J. Liu, X. Li, Y. Chen, G. Liu, J. Li, J. Am. Ceram. Soc. 97, 2705 (2014) B. Zhang, Q. Zhao, A. Chang, Y. Wu, H. Li, J. Alloys Compd. 675, 381 (2016) M. Mori, Y. Hiei, N.M. Sammes, Solid State Ionics 135, 743 (2000) M. Iwasaki, H. Takizawa, K. Uheda, T. Endo, M. Shimada, J. Mater. Chem. 8, 2765 (1998) S.P. Jiang, L. Liu, K.P. Ong, P. Wu, J. Li, J. Pu, J. Power Sources 176, 82 (2008) B.K. Flandermeyer, M.M. Nasrallah, A.K. Agarwal, H.U. Anderson, J. Am. Ceram. Soc. 67, 195 (1983) K. Azegami, M. Yoshinaka, K. Hirota, O. Yamaguchi, Solid State Commun. 112, 281 (1999) Y. Fu, H. Wang, C. Weng, S. Hu, Y. Liu, J. Am. Ceram. Soc. 98, 2561 (2015) T. Takeuchi, Y. Takeda, R. Funahashi, T. Aihara, M. Tabuchi, H. Kageyama, J. Electrochem. Soc. 147, 3979 (2000) H. Qi, Y. Luan, S. Che, L. Zuo, X. Zhao, C. Hou, Inorg. Chem. Commun. 66, 33 (2016) K. Azegami, M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Electrochem. Soc. 147, 2830 (2000) L. Groupy, H.U. Anderson, J. Am. Ceram. Soc. 59, 449 (1976) X. Liu, W. Su, Z. Lu, J. Liu, L. Pei, W. Liu, L. He, J. Alloys Compd. 305, 21 (2000) H. Berthou, C.K. Jørgensen, C. Bonnelle, Chem. Phys. Lett. 38, 199 (1976) H. Van Doveren, J.A.T.H. Verhoeven, J. Electron. Spectrosc. Relat. Phenom. 21, 265 (1980) L. Li, Q. Wei, Z. Kang, M. Rui, W. Su, J. Alloys Compd. 249, 264 (1997) A.N. Kamlo, J. Bernard, C. Lelievre, D. Houivet, J. Eur. Ceram. Soc. 31, 1457 (2011) A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009)