Chuẩn bị phim MgAl-LDH biến đổi bằng anion hữu cơ một bước dưới điều kiện nhẹ để bảo vệ chống ăn mòn cho hợp kim Mg

Journal of Materials Science - Tập 58 - Trang 16841-16854 - 2023
Kai Liang1, Zheng Dou1, Yulin Zhang2, Xuegang Zhang1, Zicong Zhao1, Ning Zhong1, Kaixuan Cui1, Fei Chen1
1College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
2School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, China

Tóm tắt

Phương pháp hỗ trợ chelator được coi là một chiến lược hiệu quả cho việc phát triển tại chỗ các phim hydroxide kép lớp (LDH) trên hợp kim magie ở áp suất khí quyển. Trong nghiên cứu này, hai anion hữu cơ, 2-Mercaptobenzothiazole (MBT) và natri dodecyl benzene sulfonate (SDBS), đã được giới thiệu riêng rẽ trong quá trình tổng hợp các phim LDH bằng phương pháp hỗ trợ chelator để hoàn thiện việc sửa đổi hữu cơ của các phim LDH. Kết quả cho thấy rằng hai anion hữu cơ này đã thúc đẩy sự phát triển của LDH theo những hình thức khác nhau. MBT có thể hình thành một lớp phức chất hữu cơ không hòa tan trên bề mặt của các phim LDH, từ đó cải thiện độ ổn định cấu trúc của chúng. Cấu trúc chuỗi carbon dài của anion SDBS đã được chèn thành công vào lớp giữa của LDH, tạo ra một cấu trúc vi mô tự niêm phong và tăng cường tính kỵ nước của các phim LDH. Cả hai anion đều đạt được thông qua việc chuẩn bị một bước các phim LDH biến đổi hữu cơ trên hợp kim magie AZ31B. Kết quả thử nghiệm điện hóa cho thấy rằng các phim LDH biến đổi có độ biểu kháng cao hơn trong vùng tần số thấp (|Z|LDH-SDBS (1.15 × 106 Ω cm2) >|Z|LDH-MBT (8.58 × 105 Ω cm2) >|Z|MgAl-LDH (4.09 × 105 Ω cm2)), điều này đã cải thiện khả năng chống ăn mòn của các phim LDH.

Từ khóa

#hydroxide kép lớp #hợp kim magie #sửa đổi hữu cơ #điện hóa #chống ăn mòn

Tài liệu tham khảo

Saranya K, Bhuvaneswari S, Chatterjee S et al (2020) Biocompatible gadolinium-coated magnesium alloy for biomedical applications. J Mater Sci 55:11582–11596. https://doi.org/10.1007/s10853-020-04742-z Arruebarrena G, Hurtado I, Väinölä J et al (2007) Development of investment-casting process of Mg-alloys for aerospace applications. Adv Eng Mater 9:751–756. https://doi.org/10.1002/adem.200700154 Wang Q, Zhang Z, Zhang X, Li G (2010) New extrusion process of Mg alloy automobile wheels. Trans Nonferrous Metals Soc China 20:s599–s603. https://doi.org/10.1016/S1003-6326(10)60546-8 Rocca E, Juers C, Steinmetz J (2010) Corrosion behaviour of chemical conversion treatments on as-cast Mg–Al alloys: electrochemical and non-electrochemical methods. Corros Sci 52:2172–2178. https://doi.org/10.1016/j.corsci.2010.02.036 Moon S, Nam Y (2012) Anodic oxidation of Mg–Sn alloys in alkaline solutions. Corros Sci 65:494–501. https://doi.org/10.1016/j.corsci.2012.08.050 Lin Z, Wang T, Yu X et al (2021) Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: a review. J Alloy Compd 879:160453. https://doi.org/10.1016/j.jallcom.2021.160453 Shi Y, Qi M, Chen Y, Shi P (2011) MAO-DCPD composite coating on Mg alloy for degradable implant applications. Mater Lett 65:2201–2204. https://doi.org/10.1016/j.matlet.2011.04.037 Wu H, Zhang L, Zhang Y et al (2020) Corrosion behavior of Mg–Al LDH film in-situ assembled with graphene on Mg alloy pre-sprayed Al layer. J Alloy Compd 834:155107. https://doi.org/10.1016/j.jallcom.2020.155107 Wang DY, Costa FR, Vyalikh A et al (2009) One-step synthesis of organic ldh and its comparison with regeneration and anion exchange method. Chem Mater 21:4490–4497. https://doi.org/10.1021/cm901238a Wen T, Yan R, Wang N et al (2020) PPA-containing layered double hydroxide (LDH) films for corrosion protection of a magnesium alloy. Surf Coat Technol 383:125255. https://doi.org/10.1016/j.surfcoat.2019.125255 Zhang D, Peng F, Tan J, Liu X (2019) In-situ growth of layered double hydroxide films on biomedical magnesium alloy by transforming metal oxyhydroxide. Appl Surf Sci 496:143690. https://doi.org/10.1016/j.apsusc.2019.143690 Iqbal MA, Fedel M (2018) The effect of the surface morphologies on the corrosion resistance of in situ growth MgAl-LDH based conversion film on AA6082. Surf Coat Technol 352:166–174. https://doi.org/10.1016/j.surfcoat.2018.08.006 Shulha TN, Serdechnova M, Lamaka SV et al (2018) Chelating agent-assisted in situ LDH growth on the surface of magnesium alloy. Sci Rep 8:16409. https://doi.org/10.1038/s41598-018-34751-7 Petrova E, Serdechnova M, Shulha T et al (2020) Use of synergistic mixture of chelating agents for in situ LDH growth on the surface of PEO-treated AZ91. Sci Rep 10:8645. https://doi.org/10.1038/s41598-020-65396-0 Anjum MJ, Zhao JM, Asl VZ et al (2021) Green corrosion inhibitors intercalated Mg: Al layered double hydroxide coatings to protect Mg alloy. Rare Met 40:2254–2265. https://doi.org/10.1007/s12598-020-01538-7 Anjum MJ, Zhao J, Zahedi AV et al (2019) In-situ intercalation of 8-hydroxyquinoline in Mg–Al LDH coating to improve the corrosion resistance of AZ31. Corros Sci 157:1–10. https://doi.org/10.1016/j.corsci.2019.05.022 Dong Y, Wang F, Zhou Q (2014) Protective behaviors of 2-mercaptobenzothiazole intercalated Zn–Al-layered double hydroxide coating. J Coat Technol Res 11:793–803. https://doi.org/10.1007/s11998-014-9568-9 Wang Y, Zhang D (2012) Synthesis, characterization, and controlled release antibacterial behavior of antibiotic intercalated Mg-Al layered double hydroxides. Mater Res Bull 47:3185–3194. https://doi.org/10.1016/j.materresbull.2012.08.029 Zhang Y, Liu J, Li Y et al (2015) Fabrication of inhibitor anion-intercalated layered double hydroxide host films on aluminum alloy 2024 and their anticorrosion properties. J Coat Technol Res 12:293–302. https://doi.org/10.1007/s11998-014-9644-1 Trikeriotis M, Ghanotakis DF (2007) Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. Int J Pharm 332:176–184. https://doi.org/10.1016/j.ijpharm.2006.09.031 Morlat-Thérias S, Mousty C, Palvadeau P et al (1999) Concomitant intercalation and decomplexation of ferrocene sulfonates in layered double hydroxides. J Solid State Chem 144:143–151. https://doi.org/10.1006/jssc.1999.8134 Xu ZP, Braterman PS (2007) Competitive intercalation of sulfonates into layered double hydroxides (LDHs): the Key Role of hydrophobic interactions. J Phys Chem C 111:4021–4026. https://doi.org/10.1021/jp0683723 Dai X, Wu L, Xia Y et al (2021) Intercalation of Y in Mg–Al layered double hydroxide films on anodized AZ31 and Mg–Y alloys to influence corrosion protective performance. Appl Surf Sci 551:149432. https://doi.org/10.1016/j.apsusc.2021.149432 Zahedi AV, Zhao J, Anjum MJ et al (2020) The effect of cerium cation on the microstructure and anti-corrosion performance of LDH conversion coatings on AZ31 magnesium alloy. J Alloy Compd 821:153248. https://doi.org/10.1016/j.jallcom.2019.153248 Hu T, Ouyang Y, Xie ZH, Wu L (2021) One-pot scalable in situ growth of highly corrosion-resistant MgAl-LDH/MBT composite coating on magnesium alloy under mild conditions. J Mater Sci Technol 92:225–235. https://doi.org/10.1016/j.jmst.2021.03.021 Purohit PJ, Huacuja-Sánchez JE, Wang DY et al (2011) Structure-property relationships of nanocomposites based on polypropylene and layered double hydroxides. Macromolecules 44:4342–4354. https://doi.org/10.1021/ma200323k Serdechnova M, Salak AN, Barbosa FS et al (2016) Interlayer intercalation and arrangement of 2-mercaptobenzothiazolate and 1,2,3-benzotriazolate anions in layered double hydroxides: In situ X-ray diffraction study. J Solid State Chem 233:158–165. https://doi.org/10.1016/j.jssc.2015.10.023 Zhang K, Yarmolenko MA, Rogachev AA et al (2013) Formation of complex bis(β-mercaptobenzothiazole)-zinc(II) films by pulsed laser deposition. Appl Surf Sci 273:836–840. https://doi.org/10.1016/j.apsusc.2013.02.028 Zhang G, Wu T, Li Y et al (2012) Sorption of humic acid to organo layered double hydroxides in aqueous solution. Chem Eng J 191:306–313. https://doi.org/10.1016/j.cej.2012.03.020 Wu L, Ding X, Zheng Z et al (2021) Doublely-doped Mg–Al–Ce-V2O74-LDH composite film on magnesium alloy AZ31 for anticorrosion. J Mater Sci Technol 64:66–72. https://doi.org/10.1016/j.jmst.2019.09.031 Önkal-Engin G, Wibulswas R, White DA (2000) Humic acid uptake from aqueous media using hydrotalcites and modified montmorillonite. Environ Technol 21:167–175. https://doi.org/10.1080/09593330.2000.9618897 Li Y, Gao B, Wu T et al (2009) Adsorption properties of aluminum magnesium mixed hydroxide for the model anionic dye reactive brilliant red K-2BP. J Hazard Mater 164:1098–1104. https://doi.org/10.1016/j.jhazmat.2008.09.009 Kameda T, Tsuchiya Y, Yamazaki T, Yoshioka T (2009) Preparation of Mg–Al layered double hydroxides intercalated with alkyl sulfates and investigation of their capacity to take up N, N-dimethylaniline from aqueous solutions. Solid State Sci 11:2060–2064. https://doi.org/10.1016/j.solidstatesciences.2009.09.008 Dou Z, Zhang Y, Shulha T et al (2022) Insight into chelating agent stimulated in-situ growth of MgAl-LDH films on magnesium alloy AZ31: The effect of initial cationic concentrations. Surf Coat Technol 439:128414. https://doi.org/10.1016/j.surfcoat.2022.128414 Chávez J, Jimenez O, Diaz-Luna J et al (2021) Microstructure and corrosion characterization of a Ti–30Zr alloy with Ta additions processed by arc-melting for biomedical applications. Mater Lett 284:129041. https://doi.org/10.1016/j.matlet.2020.129041 Zhang Y, Chen F, Zhang Y et al (2021) Microstructure and corrosion resistance of duplex coatings deposited on TC17 alloys by MAO and HiPIMS. Mater Lett 303:130506. https://doi.org/10.1016/j.matlet.2021.130506 Kartsonakis IA, Balaskas AC, Kordas GC (2011) Influence of cerium molybdate containers on the corrosion performance of epoxy coated aluminium alloys 2024–T3. Corros Sci 53:3771–3779. https://doi.org/10.1016/j.corsci.2011.07.026