Chuẩn bị vật liệu anode TiO2 nhiễm Sn dạng nano rỗng cho pin lithium-ion bằng phương pháp tách hợp kim đơn giản

Ionics - Tập 26 - Trang 4363-4372 - 2020
Yunxiang Li1, Shengli Zhu1,2,3,4, Akihisa Inoue1, Yanqin Liang1,2,3, Chuntao Chang5, Shuiyuan Luo4, Zhenduo Cui1
1School of Materials Science and Engineering, Tianjin University, Tianjin, China
2Tianjin Key Laboratory of Composite and Functional Materials, Tianjin, China
3Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, China
4College of Chemistry Engineering and Materials Science, Quanzhou Normal University, Quanzhou, China
5School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China

Tóm tắt

Composite TiO2 nhiễm Sn dạng nano rỗng (NP-TiO2/Sn) đã được chế tạo thành công bằng cách ăn mòn các dải hợp kim ba thành phần AlTiSn trong dung dịch NaOH ở nhiệt độ phòng. Composite NP-TiO2/Sn thể hiện cấu trúc xốp 3D đi kèm với các nanowire. Bên cạnh đó, các hạt nano Sn được nhúng vào các dây chằng của TiO2 vô định hình. Nhờ vào cấu trúc phân cấp độc đáo và sự thêm vào của Sn, composite NP-TiO2/Sn thể hiện khả năng nạp tốt hơn và tuổi thọ chu trình dài hơn so với thành phần không có Sn. Hơn nữa, nó còn thể hiện tuổi thọ chu trình tốt và hiệu suất coulomb ở cả mật độ dòng thấp và cao. Khi tỷ lệ nguyên tử của Ti và Sn là 9:1, khả năng xả và hiệu suất chu trình tốt nhất được thể hiện. Sau 300 chu trình tuần hoàn ở 1 A g−1, composite NP-TiO2/Sn cho thấy khả năng cao, gấp đôi so với NP-TiO2 tinh khiết. Hiệu suất điện hóa tốt và quy trình dễ dàng hỗ trợ khả năng áp dụng thực tiễn làm vật liệu anode cho các pin lithium-ion.

Từ khóa

#Nano rỗng; TiO2; Nhiễm Sn; Pin lithium-ion; Hợp kim AlTiSn; Hiệu suất điện hóa

Tài liệu tham khảo

Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657 Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603 Jiang H, Zhang H, Fu Y, Guo S, Hu Y, Zhang L, Liu Y, Liu H, Li C (2015) Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li ion storage. ACS Nano 10:1648–1654 Zheng H, Qu Q, Zhang L, Liu G, Battaglia VS (2012) Hard carbon: a promising lithium-ion battery anode for high temperature applications with ionic electrolyte. RSC Adv 2:4904–4912 Kaneti YV, Tang J, Salunkhe RR, Jiang X, Yu A, Wu KC, Yamauchi Y (2017) Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv Mater 29:1604898 Liu D, Liu Z, Li X, Xie W, Wang Q, Liu Q, Fu Y, He D (2017) Group IVA element (Si, Ge, Sn)-based alloying/dealloying anodes as negative electrodes for full-cell lithium-ion batteries. Small 13:170200 Wen L, Archer LA (2010) A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv Mater 20:1853–1858 Chen JS, Tan YL, Li CM, Cheah YL, Luan D, Madhavi S, Boey FYC, Archer LA, Lou XW (2010) Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J Am Chem Soc 132:6124–6130 Fang HT, Liu M, Wang DW, Sun T, Guan DS, Li F, Zhou J, Sham TK, Cheng HM (2009) Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 20:225701 Wang J, Shen L, Li H, Wang X, BingDing PN, Xu G, Dou H, Zhang X (2014) A facile one-pot synthesis of TiO2/nitrogen-doped reduced graphene oxide nanocomposite as anode materials for high-rate lithium-ion batteries. Electrochim Acta 133:209–216 Dahl M, Liu Y, Yin Y (2014) Composite titanium dioxide nanomaterials. Chem Rev 114:9853–9889 Yu XY, Wu HB, Yu L, Ma FX, Lou XWD (2015) Rutile TiO2 submicroboxes with superior lithium storage properties. Angew Chem 54:4001–4004 Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457 Zhu C, Xia X, Liu J, Fan Z, Chao D, Zhang H, Fan H (2014) TiO2 nanotube@SnO2 nanoflake core–branch arrays for lithium-ion battery anode. Nano Energy 4:105–112 Wang N, Yue J, Chen L, Yang J (2015) Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS Appl Mater Interfaces 7:10348–10355 Lin N, Zhou J, Han Y, Zhang K, Zhu Y, Qian T (2015) Chemical synthesis of porous hierarchical Ge-Sn binary composite by metathesis reaction for rechargeable Li-ion batteries. Chem Commun 51:17156–17159 Zhao D, Hao Q, Xu C (2016) Nanoporous TiO2/Co3O4 composite as an anode material for lithium-ion batteries. Electrochim Acta 211:83–91 Liao JY, Hiqqins D, Liu G, Chabot V, Xiao X, Chen Z (2013) Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett 13:5467–5473 Guan D, Li J, Gao X, Yuan C (2014) Controllable synthesis of MoO3-deposited TiO2 nanotubes with enhanced lithium-ion intercalation performance. J Power Sources 246:305–312 Dahn JR, Courtney IA, Mao O (1998) Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods. Solid State Ionics 111:289–294 Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397 Liwen J, Tan Z, Kuykendall T, An EJ, Fu Y, Battaglia VS, Zhang YH (2011) Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ Sci 4:3611–3616 Demir-Cakan R, Hu YS, Antonietti M, Maier J, Titirici M, Planck M (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229 Kravchyk K, Protesescu L, Bodnarchuk M, Krumeich F, Yarema M, Yarema M, Walter M, Guntlin C, Kovalenko MV (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J Am Chem Soc 135:4199–4202 Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete ML, Croce F (2013) High-performance Sn@carbon nanocomposite anode for lithium batteries. J Power Sources 226:241–248 Ye J, Zhang H, Yang R, Li X, Qi L (2010) Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6:296–306 Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1:16071 Lubke M, Johnson L, Makwana NM, Brett D, Shearing P, Liu Z, Darr JA (2015) High power TiO2 and high capacity Sn-doped TiO2 nanomaterial anodes for lithium-ion batteries. J Power Sources 294:94–102 Li X, Chen Y, Wang H, Yao H, Huang H, Mai YW, Hu N, Zhou L (2016) Inserting Sn nanoparticles into the pores of TiO2-x-C nanofibers by lithiation. Adv Funct Mater 26:376–383 Detsi E, Punzhin S, Onck PR, De Hosson JM (2012) Direct synthesis of metal nanoparticles with tunable porosity. J Mater Chem 22:4588–4591 Pugh DV, Dursun A, Corcoran SG (2003) Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J Mater Res 18:216–221 Zhang Z, Wang Y, Qi Z, Zhang W, Qin J, Frenzel J (2009) Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J Phys Chem C 113:12629–12636 Hao Q, Chen L, Xu C (2014) Facile fabrication of a three-dimensional cross-linking TiO2, nanowire network and its long-term cycling life for lithium storage. ACS Appl Mater Interfaces 6:10107–10112 Hao Q, Wang J, Xu C (2013) Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries. J Mater Chem A 2:87–93 Liu S, Feng J, Bian X, Qian Y, Liu J, Xu H (2015) Nanoporous germanium as high-capacity lithium-ion battery anode. Nano Energy 13:651–657 Hao Q, Zhao D, Duan H, Zhou Q, Xu C (2015) Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries. Nanoscale 7:5320–5327 An Y, Fei H, Zeng G, Ci L, Xiong S, Feng J, Qian Y (2018) Green, scalable and controllable fabrication of nanoporous silicon from commercial alloy precursor for high–energy lithium–ion batteries. ACS Nano 12:4993–5002 Liu S, Feng J, Bian X, Liu J, Xu H (2016) The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ Sci 9:1229–1236 Fan W, Liu X, Wang Z, Fei P, Zhang R, Wang Y, Qin C, Zhao W, Ding Y (2018) Synergetic enhancement of the electronic/ionic conductivity of a Li-ion battery by fabrication of a carbon-coated nanoporous SnOxSb alloy anode. Nanoscale 10:7605–7611 Song T, Yan M, Qian M (2015) A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications. J Porous Mater 22:713–719 Tian J, Zhao Z, Kumar A, Boughton RI, Liu H (2014) Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chem Soc Rev 43:6920–6937 Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C (2017) Pipe-wire TiO2-Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17:3830–3836 Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453 Kang S, Chen X, Niu J (2018) Sn wears super skin: a new design for long cycling batteries. Nano Lett 18:467–474 Lamberti A, Garino N, Sacco A, Bianco S, Chiodoni A, Gerbaldi C (2015) As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochim Acta 151:222–229 Hibino M, Abe K, Mochizuki M, Miyayama M (2004) Amorphous titanium oxide electrode for high-rate discharge and charge. J Power Sources 126:139–143 Wang Z, Wen X (2012) TiO2 nanocages: fast synthesis, interior functionalization and improved lithium storage properties. Adv Mater 24:4124–4129 Gao XH, Li GR, Xu YY, Hong ZL, Liang CD, Lin Z (2015) TiO2 microboxes with controlled internal porosity for high-performance lithium storage. Angew Chem Int Ed 54:14331–14335 Ren H, Yu RB, Wang JY, Jin Q, Yang M, Mao D, Kisailus D, Zhao HJ, Wang D (2014) Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett 14:6679–6684 Han H, Song T, Lee E-K, Devadoss A, Jeon Y, Ha J, Chung Y-C, Choi Y-M, Jung Y-G, Paik U (2012) Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries. ACS Nano 6:8308–8315 Wang XB, Wang YY, Yang L, Wang K, Lou XD, Cai BB (2014) Template-free synthesis of homogeneous yolk-shell TiO2 hierarchical microspheres for high performance lithium ion batteries. J Power Sources 262:72–78 Jin Y, Li S, Kushima A, Zheng X, Sun Y, Xie J, Sun J, Xue W, Zhou G, Wu J, Shi F, Zhang R, Zhu Z, So K, Cui Y, Li J (2017) Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy Environ Sci 10:580–592 Ye J, Hao Q, Xu C (2017) Facile preparation of nanoporous TiO2/MoOx composite and its high lithium storage performances as an anode material. Int J Hydrog Energy 42:6820–6828 Feng J, Zhang Z, Ci L, Zhai W, Ai Q, Xiong S (2015) Chemical dealloying synthesis of porous silicon anchored by in situ generated grapheme sheets as anode material for lithium-ion batteries. J Power Sources 287:177–183