Preparation of nanoporous Ag@TiO2 ribbons through dealloying and their electrocatalytic properties
Tóm tắt
Nanoporous Ag@TiO2 composites with core-shell structure were successfully prepared through dealloying the melt-spun Al-Ag-Ti ribbons in NaOH aqueous solution. The results revealed that TiO2 shell with thickness of about 2 nm was formed in situ on the Ag ligaments. Ti3+ and Ag+ species co-existed after the dealloyed samples were calcined at 873 K, which had significant influence on the catalytic performance. The electrochemical results showed that the nanoporous Ag@TiO2 composites significantly promoted the direct oxidation of BH4
− superior to pure Ag. The enhanced catalytic activity could be attributed to the strong interfacial effects between the ligaments and TiO2 shells.
Tài liệu tham khảo
Ding Y, Chen M (2009) MRS Bull 34:569–576
Senior NA, Newman RC (2006) Nanotechnology 17:2311–2316
Jia F, Yu C, Deng K, Zhang L (2007) J Phys Chem C 111:8424–8431
Li Q, Cui S, Yan X (2012) J Solid State Electrochem 16:1099–1104
Song TT, Gao YL, Zhang ZH, Zhai QJ (2013) Corros Sci 68:256–262
Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Science 327:319–321
Xu C, Xu X, Su J, Ding Y (2007) J Catal 252:243–248
Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Nature 410:450–453
Luo X, Li R, Huang L, Zhang T (2013) Corros Sci 67:100–108
Mao R, Liang S, Wang X, Yang Q, Han B (2012) Corros Sci 60:231–237
Jia C, Yin H, Ma H, Wang R, Ge X, Zhou A, Xu X, Ding Y (2009) J Phys Chem C 113:16138–16143
Wittstock A, Wichmann A, Biener J, Bäumer M (2011) Faraday Discuss 152:87–98
Biener MM, Biener J, Wichmann A, Wittstock A, Baumann TF, Bäumer M, Hamza AV (2011) Nano Lett 11:3085–3090
Lang X, Hirata A, Fujita T, Chen M (2011) Nat Nanotechnol 6:232–236
Wittstock A, Wichmann A, Bäumer M (2012) ACS Catal 2:2199–2215
Su L, Gan YX (2012) Nano Energy 1:159–163
Wang X, Qi Z, Zhao C, Wang W, Zhang Z (2009) J Phys Chem C 113:13139–13150
Ji H, Wang X, Zhao C, Zhang C, Xu J, Zhang Z (2011) CrystEngComm 13:2617–2628
Ramasamy P, Seo DM, Kim SH, Kim J (2012) J Mater Chem 22:11651–11657
Feng C, Xu G, Liu H, Lv J, Zheng Z, Wu Y (2014) J Solid State Electrochem 18:163–171
Du P, Cao Y, Li D, Liu Z, Kong X, Sun Z (2013) RSC Adv 3:6016–6021
Pisarek M, Holdynski M, Roguska A, Kudelski A, Janik-Czachor M (2014) J Solid State Electrochem 18:3099–3109
Li GJ, Lu FF, Wei X, Song XP, Sun ZB, Yang ZM, Yang SC (2013) J Mater Chem A 1:4974–4981
Li G, Zhang X, Wang L, Song X, Sun Z (2013) J Electrochem Soc 160:F1116–F1122
Bera P, Patil KC, Hegde MS (2000) Phys Chem Chem Phys 2:3715–33719
Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, Neophytides SG, Falaras P (2003) Appl Catal B Environ 42:187–201
Liu C, Yang D, Jiao Y, Tian Y, Wang Y, Jiang Z (2013) ACS Appl Mater Interfaces 5:3824–3832
Linsebigler A, Rusu C, Yates JT (1996) J Am Chem Soc 118:5284–5289
Song T, Gao Y, Zhang Z, Zhai Q (2011) CrystEngComm 13:7058–7067
Zhang Q, Zhang Z (2010) Phys Chem Chem Phys 12:1453–1472
Hossein-Babaei F, Rahbarpour S (2011) Solid State Electron 56:185–190
Atwan MH, Northwood DO, Gyenge EL (2007) Int J Hydrogen Energy 32:3116–3125
Concha BM, Chatenet M (2009) Electrochim Acta 54:6130–6139
Martins JI, Nunes MC, Koch R, Martins L, Bazzaoui M (2007) Electrochim Acta 52:6443–6449
Du J, Zhang J, Liu Z, Han B, Jiang T, Huang Y (2006) Langmuir 22:1307–1312
Rao KVS, Lavedrine B, Boule P (2003) J Photochem Photobiol A 154:189–193
Sen S, Mahanty S, Roy S, Heintz O, Bourgeois S, Chaumont D (2005) Thin Solid Films 474:245–249
Feng RX, Dong H, Cao YL, Ai XP, Yang HX (2007) Int J Hydrogen Energy 32:4544–4549
Meng F, Sun Z (2009) Appl Surf Sci 255:6715–6720