Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes

Nature Protocols - Tập 12 Số 7 - Trang 1349-1358 - 2017
Jue Deng1, Yifan Xu1, Sisi He1, Peining Chen1, Luke Bao1, Yongfeng Hu1, Bingjie Wang1, Xuemei Sun1, Huisheng Peng1
1Department of Macromolecular Science and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Schulz, M. Speeding up artificial muscles. Science 338, 893–894 (2012).

Fratzl, P. & Barth, F.G. Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009).

Bauer, S. et al. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2014).

Madden, J.D. Mobile robots: motor challenges and materials solutions. Science 318, 1094–1097 (2007).

Wang, W., Sun, X., Wu, W., Peng, H. & Yu, Y. Photoinduced deformation of crosslinked liquid-crystalline polymer film oriented by a highly aligned carbon nanotube sheet. Angew. Chem. Int. Ed. Engl. 51, 4644–4647 (2012).

Wu, Z.L. et al. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4, 1586 (2013).

Schulgasser, K. & Witztum, A. The hierarchy of chirality. J. Theor. Biol. 230, 281–288 (2004).

Fratzl, P. & Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

Haines, C.S. et al. New twist on artificial muscles. Proc. Natl. Acad. Sci. USA 113, 11709–11716 (2016).

Forterre, Y. & Dumais, J. Generating helices in nature. Science 333, 1715–1716 (2011).

Egan, P., Sinko, R., LeDuc, P.R. & Keten, S. The role of mechanics in biological and bio-inspired systems. Nat. Commun. 6, 7418 (2015).

Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).

Armon, S., Efrati, E., Kupferman, R. & Sharon, E. Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011).

Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

Fang, Y., Pence, T.J. & Tan, X. Fiber-directed conjugated-polymer torsional actuator: nonlinear elasticity modeling and experimental validation. IEEE ASME Trans. Mechatron. 16, 656–664 (2011).

Mirvakili, S.M. et al. Niobium nanowire yarns and their application as artificial muscles. Adv. Funct. Mater. 23, 4311–4316 (2013).

Mirfakhrai, T. et al. Electrochemical actuation of carbon nanotube yarns. Smart Mater. Struct. 16, S243 (2007).

Sun, X. et al. Unusual reversible photomechanical actuation in polymer/nanotube composites. Angew. Chem. Int. Ed. Engl. 51, 8520–8524 (2012).

Liu, Z. et al. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349, 400–404 (2015).

Guo, W. et al. A novel electromechanical actuation mechanism of a carbon nanotube fiber. Adv. Mater. 24, 5379–5384 (2012).

Chen, P. et al. Biologically inspired, sophisticated motions from helically assembled, conducting fibers. Adv. Mater. 27, 1042–1047 (2015).

Haines, C.S. et al. Artificial muscles from fishing line and sewing thread. Science 343, 868–872 (2014).

Wang, J.-S. et al. Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Sci. Rep. 3, 3102 (2013).

Chen, P. et al. Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotech. 10, 1077–1083 (2015).

He, S. et al. A mechanically actuating carbon-nanotube fiber in response to water and moisture. Angew. Chem. Int. Ed. Engl. 54, 14880–14884 (2015).

Li, Y. et al. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators. ACS Nano 7, 8128–8135 (2013).

Zhang, Y. et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. Engl. 126, 14564–14568 (2014).

De Volder, M.F.L., Tawfick, S.H., Baughman, R.H. & Hart, A.J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

Li, D. et al. Molecular, supramolecular, and macromolecular motors and artificial muscles. MRS Bull. 34, 671–681 (2009).

Jiang, K., Li, Q. & Fan, S. Nanotechnology: spinning continuous carbon nanotube yarns. Nature 419, 801–801 (2002).

Baughman, R.H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

Foroughi, J. et al. Torsional carbon nanotube artificial muscles. Science 334, 494–497 (2011).

Qiu, J. et al. Liquid infiltration into carbon nanotube fibers: effect on structure and electrical properties. ACS Nano 7, 8412–8422 (2013).

Meng, F., Zhao, J., Ye, Y., Zhang, X. & Li, Q. Carbon nanotube fibers for electrochemical applications: effect of enhanced interfaces by an acid treatment. Nanoscale 4, 7464–7468 (2012).

Fang, X. et al. Core-sheath carbon nanostructured fibers for efficient wire-shaped dye-sensitized solar cells. Adv. Mater. 26, 1694–1698 (2014).

Skotheim, J.M. & Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310 (2005).

Mirfakhrai, T., Madden, J.D. & Baughman, R.H. Polymer artificial muscles. Mater. Today 10, 30–38 (2007).