Preparation of active coke combining coal with biomass and its denitrification performance

Springer Science and Business Media LLC - Tập 28 - Trang 1203-1211 - 2021
Xiao-hu Zhou1,2, Sheng-fu Zhang1,2, Yu-yang Wei1,2, Farooq Sher3, Yang Li1,2, Wen-zhou Yu1,2, Liang-ying Wen1,2
1College of Materials Science and Engineering, Chongqing University, Chongqing, China
2Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and Advanced Materials, Chongqing University, Chongqing, China
3School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK

Tóm tắt

To improve the selective catalytic reduction of NO with NH3 over active coke (AC), coal–biomass ACs were prepared from the mixture of poplar and 1/3 coking coal for increasing the active sites. The resultant ACs were characterized by N2 adsorption and X-ray photoelectron spectroscopy. Furthermore, the denitrification performance was tested at laboratory scale. In addition, density functional theory was used to analyze active sites on the surface of AC. The result revealed that, with an increase in poplar content, the decrease in micropores volume appeared in the reduction of denitrification space. However, C−O group including hydroxyl and ether increased with the increase in poplar content, which was found to be most likely responsible for the promoted catalytic activity of AC toward NO reduction mainly because of enhancing NH3 adsorption. The comprehensive effect of two factors made the denitrification ability of AC increased first and then decreased.

Tài liệu tham khảo

G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B Environ. 18 (1998) 1−36.

Z.G. Lei, B. Han, K. Yang, B.H. Chen, Chem. Eng. J. 215−216 (2013) 651−657.

H. Teng, Y.T. Tu, Y.C. Lai, C.C. Lin, Carbon 39 (2001) 575−582.

Y.Q. Hou, G.Q. Cai, Z.G. Huang, X.J. Han, S.J. Guo, Chem. Eng. J. 247 (2014) 59−65.

C.Z. Wang, S.J. Yang, H.Z. Chang, Y. Peng, J.H. Li, Chem. Eng. J. 225 (2013) 520−527.

Y.L. Fu, Y.F. Zhang, G.Q. Li, J. Zhang, Y.J. Guo, J. Energy Inst. 90 (2017) 813−823.

Q.Q. Guo, W. Jing, Y.Q. Hou, Z.G. Huang, G.Q. Ma, X.J. Han, D.K. Sun, Chem. Eng. J. 270 (2015) 41−49.

Y.T. Lin, Y.R. Li, Z.C. Xu, J. Xiong, T.Y. Zhu, Fuel 223 (2018) 312−323.

B.X. Shen, J.H. Chen, S.J. Yue, G.L. Li, Fuel 156 (2015) 47−53.

Y.R. Li, Y.Y. Guo, T.Y. Zhu, S. Ding, J. Environ. Sci 43 (2016) 128−135.

B.C. Huang, R. Huang, D.J. Jin, D.Q. Ye, Catal. Today 126 (2007) 279−283.

B. Krzyżyńska, A. Malaika, P. Rechnia, M. Kozłowski, J. Mol. Catal. A Chem. 395 (2014) 523−533.

R. Pietrzak, P. Nowicki, H. Wachowska, Appl. Surf. Sci. 255 (2009) 3586−3593.

P. Nowicki, R. Pietrzak, H. Wachowska, Energy Fuels 23 (2009) 2205−2212.

C. Moreno-Castilla, F. Carrasco-Marin, M.V. López-Ramón, M.A. Alvarez-Merino, Carbon 39 (2001) 1415−1420.

B. Serrano-Talavera, M.J. Muñoz-Guillena, A. Linares-Solano, C. Salinas-Martínez de Lecea, Energy Fuels 11 (1997) 785−791.

M.K. Guo, Z.L. Xie, Z.H. Ye, L.A. Hou, Adsorption technology by activated carbon and its application in environment engineering, Chemical Industry Press, Beijing, China, 2016.

A.M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, A. Castro-Muñiz, F. Suárez-García, J.M.D Tascón, Carbon 45 (2007) 1941−1950.

A.A. Ceyhan, Ö. Şahin, O. Baytar, C. Saka, J. Anal. Appl. Pyrol. 104 (2013) 378−383.

X.N. Yu, F.F. Cao, X.B. Zhu, X.C. Zhu, X. Gao, Z.Y. Luo, K.F. Cen, Aerosol. Air Qual. Res. 17 (2017) 302−313.

K. Zhang, Y. He, Z.H. Wang, T.H. Huang, Q. Li, S. Kumar, K.F. Cen, Fuel 210 (2017) 738−747.

L.Y. Wang, X.X. Cheng, Z.Q. Wang, C.Y. Ma, Y.K. Qin, Appl. Catal. B Environ. 201 (2017) 636−651.

B. Delley, J. Chem. Phys. 113 (2000) 7756−7764.

J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865−3868.

P. Politzer, J.S. Murray, in: K.B. Lipkowitz, D.B. Boyd (Eds.), Reviews in Computational Chemistry, Volume 2, Wiley-VCH, Inc., New York, USA, 1991, pp. 273−312.

T.X. Nguyen, N. Cohaut, J. Bae, S.K. Bhatia, Langmuir 24 (2008) 7912−7922.

J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66 (1994) 1739−1758.

A. Swiatkowski, M. Pakula, S. Biniak, M. Walczyk, Carbon 42 (2004) 3057−3069.

A. Świątkowski, H. Grajek, M. Pakuła, S. Biniak, Z. Witkiewicz, Colloids Surfaces A 208 (2002) 313−320.

M. Polovina, B. Babić, B. Kaluderović, A. Dekanski, Carbon 35 (1997) 1047−1052.

Z.M. Wang, N. Yamashita, Z.X. Wang, K. Hoshinoo, H. Kanoh, J. Colloid Interface Sci. 276 (2004) 143−150.

L. Chen, J.H. Li, M.F. Ge, J. Phys. Chem. C 113 (2009) 21177−21184.

H.P. Zhang, X.G. Luo, H.T. Song, X.Y. Lin, X. Lu, Y.H. Tang, Appl. Surf. Sci. 317 (2014) 511−516.

D. Farmanzadeh, L. Tabari, Appl. Surf. Sci. 324 (2015) 864−870.