Preparation of a high surface area zirconium oxide for fuel cell application
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahniyaz, A., Fujiwara, T., Fujino, T., & Yoshimura, M. (2004). Low-temperature direct synthesis of CeO2–ZrO2 solid solution nanoparticles by a hydrothermal method. Journal of Nanoscience and Nanotechnology, 4, 233–238.
Arantes, T. M., Mambrini, G. P., Stroppa, D. G., Leite, E. R., Longo, E., Ramirez, A. J., & Camargo, E. R. (2010). Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process. Journal of Nanoparticle Research, 12, 3105–3110.
Babu, C. R., Reddy, N. R. M., & Reddy, K. (2015). Synthesis and characterization of high dielectric nano zirconium oxide. Ceramics International, 41, 10675–10679.
Behbahani, A., Rowshanzamir, S., & Esmaeilifar, A. (2012). Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia. Procedia Engineering, 42, 908–917.
Cao, H., Qiu, X., Luo, B., Liang, Y., Zhang, Y., Tan, R., Zhao, M., & Zhu, Q. (2004). Synthesis and room-temperature ultraviolet photoluminescence properties of zirconia nanowires. Advanced Functional Materials, 14, 243–246.
Chen, H., Gu, J., Shi, J., Liu, Z., Gao, J., Ruan, M., & Yan, D. (2005). A composite surfactant route for the synthesis of thermally stable and hierarchically porous zirconia with a nanocrystallized framework. Advanced Materials, 17, 2010–2014.
Chen, S., Yin, Y., Wang, D., Liu, Y., & Wang, X. (2005). Structures, growth modes and spectroscopic properties of small zirconia clusters. Journal of Crystal Growth, 282, 498–505.
Christensen, A., & Carter, E. A. (1998). First-principles study of the surfaces of zirconia. Physical Review B, 58, 8050.
Conway, B., & Pell, W. (2002). Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. Journal of Power Sources, 105, 169–181.
Davar, F., Hassankhani, A., & Loghman-Estarki, M. R. (2013). Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceramics International, 39, 2933–2941.
Dercz, G., Prusik, K., & Pajak, L. (2008). X-ray and SEM studies on zirconia powders. JAMME, 31, 408–414.
Dong, W.-S., Lin, F.-Q., Liu, C.-L., & Li, M.-Y. (2009). Synthesis of ZrO2 nanowires by ionic-liquid route. Journal of Colloid and Interface Science, 333, 734–740.
Dwivedi, R., Maurya, A., Verma, A., Prasad, R., & Bartwal, K. (2011). Microwave assisted sol–gel synthesis of tetragonal zirconia nanoparticles. Journal of Alloys and Compounds, 509, 6848–6851.
Escribano, V. S., López, E. F., Panizza, M., Resini, C., Amores, J. M. G., & Busca, G. (2003). Characterization of cubic ceria–zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy. Solid State Sciences, 5, 1369–1376.
Everett, D. H., & Stone, F. S. (1958). The structure and properties of porous materials (Proceedings of the tenth symposium of the Colston Research Society held in University of Bristol). Butterworths, 10.
Ge, J., Ye, Y. D., Yao, H. B., Zhu, X., Wang, X., Wu, L., Wang, J. L., Ding, H., Yong, N., & He, L. H. (2014). Pumping through porous hydrophobic/oleophilic materials: An alternative technology for oil spill remediation. Angewandte Chemie, 126, 3686–3690.
Gengelbach, G., & Spears, J. (1998). Effects of dietary copper and molybdenum on copper status, cytokine production, and humoral immune response of calves 1. Journal of Dairy Science, 81, 3286–3292.
Gil, E., Mas, Á., Lerma, C., & Vercher, J. (2015). Exposure factors influence stone deterioration by crystallization of soluble salts. Advances in Materials Science and Engineering, 2015, 1–10.
Gregg, S., & Sing, K. (1982). W. Adsorption surface area and porosity, 2nd. London: Academic.
Guo, G.-Y., Chen, Y.-L., & Ying, W.-J. (2004). Thermal, spectroscopic and X-ray diffractional analyses of zirconium hydroxides precipitated at low pH values. Materials Chemistry and Physics, 84, 308–314.
Hamling, D. (1997). Using ceramic-fiber materials in corrosive environments. American Ceramic Society Bulletin, 76, 79–82.
Ibáñez, R. L., Martin, F., Ramos-Barrado, J., & Leinen, D. (2006). Optimization of spray pyrolysis zirconia coatings on aluminized steel. Surface and Coatings Technology, 200, 6368–6372.
Kalkur, T., & Lu, Y. (1992). Electrical characteristics of ZrO 2-based metal-insulator-semiconductor structures on p-Si. Thin Solid Films, 207, 193–196.
Kumari, L., Du, G., Li, W., Vennila, R. S., Saxena, S., & Wang, D. (2009). Synthesis, microstructure and optical characterization of zirconium oxide nanostructures. Ceramics International, 35, 2401–2408.
Lumpkin, G. R. (1999). Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: An overview and case study. Journal of Nuclear Materials, 274, 206–217.
Maimaitiyili, T., Steuwer, A., Blomquist, J., Matthew, B., Olivier, Z., Andrieux, J., Bjerkén, C., & Fabienne, R. (2014). In-situ hydrogen charging of zirconium powder to study isothermal percipitation of hydrides and determination of Zr-hydride crystal structure. arXiv preprint arXiv, 1408, 4665.
Mokhtaruddin, S. R., Mohamad, A. B., Loh, K. S., & Kadhum, A. A. H. (2016). Thermal properties and conductivity of Nafion-zirconia composite membrane. Malaysian Journal of Analytical Sciences, 20, 670–677.
Monaco, C., Tucci, A., Esposito, L., & Scotti, R. (2013). Microstructural changes produced by abrading Y-TZP in presintered and sintered conditions. Journal of Dentistry, 41, 121–126.
Nagarajan, V., Saravanakannan, V., & Chandiramouli, R. (2014). Quantum chemical insights on structural and electronic properties of anionic, cationic and neutral ZrO2 nanostructures. International Journal of ChemTech Research, 6, 2962–2970.
Nasibi, M., Golozar, M. A., & Rashed, G. (2012). Nano zirconium oxide/carbon black as a new electrode material for electrochemical double layer capacitors. Journal of Power Sources, 206, 108–110.
Nishizawa, H., Yamasaki, N., Matsuoka, K., & Mitsushio, H. (1982). Crystallization and transformation of zirconia under hydrothermal conditions. Journal of the American Ceramic Society, 65, 343–346.
Noh, H.-J., Seo, D.-S., Kim, H., & Lee, J.-K. (2003). Synthesis and crystallization of anisotropic shaped ZrO 2 nanocrystalline powders by hydrothermal process. Materials Letters, 57, 2425–2431.
Piszczek, P., Radtke, A., Grodzicki, A., Wojtczak, A., & Chojnacki, J. (2007). The new type of [Zr 6 (μ 3-O) 4 (μ 3-OH) 4] cluster core: Crystal structure and spectral characterization of [Zr 6 O 4 (OH) 4 (OOCR) 12](R= Bu t, C (CH 3) 2 et). Polyhedron, 26, 679–685.
Reddy, B. M., & Khan, A. (2005). Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports. Catalysis Reviews, 47, 257–296.
Sigwadi, R., Dhlamini, S., Mokrani, T., & Nonjola, P. (2017). Effect of synthesis temperature on particles size and morphology of zirconium oxide nanoparticle. Journal of Nano Research, 50, 18–31.
Singh, A. K., & Nakate, U. T. (2014). Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. The Scientific World Journal, 2014, 1–7.
Singh, R. N., Ståhle, P., Massih, A. R., & Shmakov, A. (2007). Temperature dependence of misfit strains of δ-hydrides of zirconium. Journal of Alloys and Compounds, 436, 150–154.
Tahir, M. N., Gorgishvili, L., Li, J., Gorelik, T., Kolb, U., Nasdala, L., & Tremel, W. (2007). Facile synthesis and characterization of monocrystalline cubic ZrO2 nanoparticles. Solid State Sciences, 9, 1105–1109.
Tahmasebpour, M., Babaluo, A., & Aghjeh, M. R. (2008). Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method. Journal of the European Ceramic Society, 28, 773–778.
Tai, C. Y., Hsiao, B.-Y., & Chiu, H.-Y. (2004). Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 237, 105–111.
Tran, C., & Kalra, V. (2013). Fabrication of porous carbon nanofibers with adjustable pore sizes as electrodes for supercapacitors. Journal of Power Sources, 235, 289–296.
Wang, L., Cai, K., Wang, Y., Yin, J., Li, H., & Zhou, C. (2009). Preparation and characterization of tetragonal-ZrO 2 nanopowders by a molten hydroxides method. Ceramics International, 35, 2499–2501.
Wang, S., Tan, Z., Li, Y., Sun, L., & Zhang, T. (2006). Synthesis, characterization and thermal analysis of polyaniline/ZrO 2 composites. Thermochimica Acta, 441, 191–194.
William, D., Callister, JR., David, G.R. (2012). Fundamentals of materials science and engineering: An integrated approach. Hoboken: Wiley.
Xu, H., Qin, D.-H., Yang, Z., & Li, H.-L. (2003). Fabrication and characterization of highly ordered zirconia nanowire arrays by sol–gel template method. Materials Chemistry and Physics, 80, 524–528.
Yashima, M., Kato, T.-A., Kakihana, M., Gulgun, M. A., Matsuo, Y., & Yoshimura, M. (1997). Crystallization of hafnia and zirconia during the pyrolysis of acetate gels. Journal of Materials Research, 12, 2575–2583.
Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., & BAO, Z. (2011). Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Letters, 11, 4438–4442.
Zhu, Y.-F., Shi, L., Liang, J., Hui, D., & Lau, K.-T. (2008). Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Composites Part B: Engineering, 39, 1136–1141.
Zuzek, E., Abriata, J., San-Martin, A., & Manchester, F. (1990). The H-Zr (hydrogen-zirconium) system. Journal of Phase Equilibria, 11, 385–395.