Preparation of Ti 3 C 2 and Ti 2 C MXenes by fluoride salts etching and methane adsorptive properties
Tóm tắt
Từ khóa
Tài liệu tham khảo
Naguib, 2014, 25th anniversary article: MXene: a new family of two-dimensional materials, Adv. Mater., 26, 992, 10.1002/adma.201304138
Kurtoglu, 2012, First principles study of two-dimensional early transition metal carbides, MRS Commun., 1, 1
Lei, 2015, Recent advances in MXene: preparation, properties, and applications, Front. Phys., 10, 276, 10.1007/s11467-015-0493-x
M.W. Barsoum, Y. Gogotsi, M.N. Abdelmalak, O. Mashtalir, Compositions comprising free-standing two-dimensional nanocrystals, U.S. Patent. 9193595, 2015,11, 24.
Gao, 2014, Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate, Solid State Sci., 35, 62, 10.1016/j.solidstatesciences.2014.06.014
Gao, 2015, Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity, Mater. Lett., 150, 62, 10.1016/j.matlet.2015.02.135
Wang, 2015, An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor, J. Electrochem. Soc., 162, B16, 10.1149/2.0371501jes
Zhao, 2015, Flexible MXene/carbon nanotube composite paper with high volumetric capacitance, Adv. Mater., 27, 339, 10.1002/adma.201404140
Ghidiu, 2014, Conductive two-dimensional titanium carbide ‘clay' with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970
Sun, 2014, Two-dimensional Ti3C2 as anode material for Li-ion batteries, Electrochem. Commun., 47, 80, 10.1016/j.elecom.2014.07.026
Xie, 2014, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries, ACS Nano, 8, 9606, 10.1021/nn503921j
Naguib, 2012, MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun., 16, 61, 10.1016/j.elecom.2012.01.002
Kim, 2015, High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries, Electrochim. Acta, 163, 246, 10.1016/j.electacta.2015.02.132
Peng, 2014, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide, J. Am. Chem. Soc., 136, 4113, 10.1021/ja500506k
Mashtalir, 2014, Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media, J. Mater. Chem. A, 2, 14334, 10.1039/C4TA02638A
Liu, 2016, Preparation and methane adsorption of two-dimensional carbide Ti2C, Adsorption, 22, 915, 10.1007/s10450-016-9795-8
Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Barsoum, 2000, The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 28, 201, 10.1016/S0079-6786(00)00006-6
Barsoum, 2001, The MAX phases: unique new carbide and nitride materials − ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight, Am. Sci., 89, 334, 10.1511/2001.28.736
Eklund, 2010, The Mn+1AXn phases: materials science and thin-film processing, Thin Solid Films, 518, 1851, 10.1016/j.tsf.2009.07.184
Sun, 2011, Progress in research and development on MAX phases: a family of layered ternary compounds, Int. Mater. Rev., 56, 143, 10.1179/1743280410Y.0000000001
Eklund, 2017, Layered ternary Mn+1AXn phases and their 2D derivative MXene: an overview from a thin-film perspective, J. Phys. D: Appl. Phys, 50, 113001, 10.1088/1361-6463/aa57bc
Hong Ng, 2017, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications, J. Mater. Chem. A, 5, 3039, 10.1039/C6TA06772G
Grieseler, 2014, Nanostructured plasma etched, magnetron sputtered nanolaminar Cr2AlC MAX phase thin films, Appl. Surf. Sci., 292, 997, 10.1016/j.apsusc.2013.12.099
Anasori, 2015, Two-dimensional ordered, double transition metals carbides (MXenes), ACS Nano, 9, 9507, 10.1021/acsnano.5b03591
Mashtalir, 2013, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4, 1716, 10.1038/ncomms2664
Naguib, 2013, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc., 135, 15966, 10.1021/ja405735d
Ghidiu, 2014, Synthesis and characterization of two-dimensional Nb4C3 (MXene), Chem. Commun., 50, 9517, 10.1039/C4CC03366C
Meshkian, 2015, Synthesis of two-dimensional molybdenum carbide Mo2C, from the gallium based atomic laminate Mo2Ga2C, Scr. Mater., 108, 147, 10.1016/j.scriptamat.2015.07.003
Halim, 2016, Synthesis and characterization of 2D molybdenum carbide (MXene), Adv. Funct. Mater., 26, 3118, 10.1002/adfm.201505328
Lai, 2015, Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis, Acta Mater., 99, 157, 10.1016/j.actamat.2015.07.063
Zhou, 2016, A two-dimensional zirconium carbide by selective etching of Al3C3 from two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5, Angew. Chem., 55, 5008, 10.1002/anie.201510432
Zhou, 2017, Synthesis and electrochemical properties of two-dimensional hafnium carbide, ACS Nano, 4
Urbankowski, 2016, Synthesis of two-dimensional titanium nitride Ti4N3 (MXene), Nanoscale, 8, 11385, 10.1039/C6NR02253G
Zhang, 2017, Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination, J. Alloys Compd., 695, 818, 10.1016/j.jallcom.2016.10.127
Naguib, 2015, Large-scale delamination of multi-layers transition metal carbides and carbonitrides ‘MXenes’, Dalton Trans., 44, 9353, 10.1039/C5DT01247C
Halim, 2014, Transparent conductive two-dimensional titanium carbide epitaxial thin films, Chem. Mater., 26, 2374, 10.1021/cm500641a
Ling, 2014, Flexible and conductive MXene films and nanocomposites with high capacitance, Proc. Natl. Acad. Sci. U. S. A., 111, 16676, 10.1073/pnas.1414215111
Lukatskaya, 2013, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, 341, 1502, 10.1126/science.1241488
Hu, 2013, MXene A new family of promising hydrogen storage medium, J. Phys. Chem. A, 117, 14253, 10.1021/jp409585v
Hu, 2014, Two-dimensional Sc2C. A reversible and high-capacity hydrogen storage material predicted by first-principles calculations, Int. J. Hydrog. Energy, 39, 10606, 10.1016/j.ijhydene.2014.05.037
Yu, 2015, Monolayer Ti2CO2. A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity, ACS Appl. Mater. Interfaces, 7, 13707, 10.1021/acsami.5b03737
Li, 2013, Synthesis of high pure Ti3AlC2 and Ti2AlC powders from TiH2 powders as Ti source by tube furnace, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 28, 882, 10.1007/s11595-013-0786-2
Li, 2015, Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2, Mater. Sci. Eng.: B, 191, 33, 10.1016/j.mseb.2014.10.009
Wang, 2016, Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination, Appl. Surf. Sci., 384, 287, 10.1016/j.apsusc.2016.05.060
Hope, 2016, NMR reveals the surface functionalisation of Ti3C2 MXene, Phys. Chem. Chem. Phys., 18, 5099, 10.1039/C6CP00330C
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett, 77, 3865, 10.1103/PhysRevLett.77.3865
Sun, 2016, Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: a first-Principles investigation, ACS Appl. Mater. Interfaces, 8, 74, 10.1021/acsami.5b03863
Sun, 2014, First principles calculations of the relative stability, structure and electronic properties of two dimensional metal carbides and nitrides, Key Eng. Mater., 602, 527, 10.4028/www.scientific.net/KEM.602-603.527
Halim, 2016, X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes), Appl. Surf. Sci., 362, 406, 10.1016/j.apsusc.2015.11.089
Sharma, 2016, Calorimetric determination of thermodynamic stability of MAX and MXene phases, J. Phys. Chem. C, 120, 28131, 10.1021/acs.jpcc.6b10241