Preparation of Silica-Based Superficially Porous Silica and its Application in Enantiomer Separations: a Review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ismail OH, Antonelli M, Ciogli A, De Martino M, Catani M, Villani C, Cavazzini A, Ye M, Bell DS, Gasparrini F. Direct analysis of chiral active pharmaceutical ingredients and their counterions by ultra high performance liquid chromatography with macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A. 2018;1576:42–50.
Graffius GC, Jocher BM, Zewge D, Halsey HM, Lee G, Bernardoni F, Bu XD, Hartman R, Regalado EL. Generic gas chromatography-flame ionization detection method for quantitation of volatile amines in pharmaceutical drugs and synthetic intermediates. J Chromatogr A. 2017;1518:70–7.
Hamada N, Hashi Y, Yamaki S, Guo Y, Zhang L, Li H, Lin J-M. Construction of on-line supercritical fluid extraction with reverse phase liquid chromatography–tandem mass spectrometry for the determination of capsaicin. Chin Chem Lett. 2019;30:99–102.
Bai Y-L, Hong Z-D, Zhang T-Y, Cai B-D, Zhang Y-Z, Feng Y-Q. A method for simultaneous determination of 14 carbonyl-steroid hormones in human serum by ultra high performance liquid chromatography-tandem mass spectrometry. J Anal Test. 2020;4:1–12.
Zhou H, Chen J, Li H, Quan K, Zhang Y, Qiu H. Imidazolium ionic liquid-enhanced poly(quinine)-modified silica as a new multi-mode chromatographic stationary phase for separation of achiral and chiral compounds. Talanta. 2020;211:120743.
Yuan N, Chen J, Zhou H, Ali MC, Guan M, Qiu H. Nitrogen-doping to enhance the separation selectivity of glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Talanta. 2020;218:121140.
Song L, Zhang H, Chen J, Li Z, Guan M, Qiu H. Imidazolium ionic liquids-derived carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Talanta. 2020;209:120518.
Yuan N, Chen J, Cai T, Li Z, Guan M, Zhao L, Qiu H. Glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. J Chromatogr A. 2020;1619:460930.
Song L, Zhang H, Cai T, Chen J, Li Z, Guan M, Qiu H. Porous graphene decorated silica as a new stationary phase for separation of sulfanilamide compounds in hydrophilic interaction chromatography. Chin Chem Lett. 2019;30:863–6.
Gülfen M, Canbaz Y, Özdemir A. Simultaneous determination of amoxicillin, lansoprazole, and levofloxacin in pharmaceuticals by HPLC with UV–Vis detector. J Anal Test. 2020;4:45–53.
Wren SAC, Tchelitcheff P. Use of ultra-performance liquid chromatography in pharmaceutical development. J Chromatogr A. 2006;1119:140–6.
Gritti F, Gilar M. Impact of frit dispersion on gradient performance in high-throughput liquid chromatography. J Chromatogr A. 2019;1591:110–9.
Ahmad IAH, Chen WY, Halsey HM, Klapars A, Limanto J, Pirrone GF, Nowak T, Bennett R, Hartman R, Makarov AA, Mangion I, Regalado EL. Multi-column ultra-high performance liquid chromatography screening with chaotropic agents and computer-assisted separation modeling enables process development of new drug substances. Analyst. 2019;144:2872–80.
Gumustas M, Uslu B, Ozkan SA, Aboul-Enein HY. Validated stability-indicating HPLC and UPLC assay methods for the determination of entacapone in pharmaceutical dosage forms. Chromatographia. 2014;77:1721–6.
Nguyen DT-T, Guillarme D, Rudaz S, Veuthey J-L. Chromatographic behaviour and comparison of column packed with sub-2 microm stationary phases in liquid chromatography. J Chromatogr A. 2006;1128:105–13.
Gritti F, Guiochon G. Mass transfer resistance in narrow-bore columns packed with 1.7 microm particles in very high pressure liquid chromatography. J Chromatogr A. 2010;1217:5069–83.
Horvath C, Lipsky SR. Column design in high pressure liquid chromatography. J Chromatogr Sci. 1969;7:109–16.
Kahsay G, Broeckhoven K, Adams E, Desmet G, Cabooter D. Kinetic performance comparison of fully and superficially porous particles with a particle size of 5 microm: intrinsic evaluation and application to the impurity analysis of griseofulvin. Talanta. 2014;122:122–9.
DeStefano JJ, Langlois TJ, Kirkland JJ. Characteristics of superficially-porous silica particles for fast HPLC: some performance comparisons with sub-2-µm particles. J Chromatogr Sci. 2008;46:254–60.
Gumustas M, Zalewski P, Ozkan SA, Uslu B. The history of the core–shell particles and applications in active pharmaceutical ingredients via liquid chromatography. Chromatographia. 2019;82:17–48.
Cheng L, Cai J, Ke Y. Ultrasonic-assisted sol–gel synthesis of core–shell silica particles for high-performance liquid chromatography. J Inorg Organomet Polym Mater. 2019;30:859–68.
Blue LE, Jorgenson JW. 1.1 mum superficially porous particles for liquid chromatography. Part I: synthesis and particle structure characterization. J Chromatogr A. 2011;1218:7989–95.
Hayes R, Ahmed A, Edge T, Zhang H. Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A. 2014;1357:36–52.
Horvath K, Lukacs D, Sepsey A, Felinger A. Effect of particle size distribution on the separation efficiency in liquid chromatography. J Chromatogr A. 2014;1361:203–8.
Gritti F, Cavazzini A, Marchetti N, Guiochon G. Comparison between the efficiencies of columns packed with fully and partially porous C18-bonded silica materials. J Chromatogr A. 2007;1157:289–303.
Ludvigsson JW, Karlsson A, Kjellberg V. Core–shell column Tanaka characterization and additional tests using active pharmaceutical ingredients. J Sep Sci. 2016;39:4520–32.
Qu Q, Min Y, Zhang L, Xu Q, Yin Y. Silica microspheres with fibrous shells: synthesis and application in HPLC. Anal Chem. 2015;87:9631–8.
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26:62–9.
Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T. Extension of size of monodisperse silica nanospheres and their well-ordered assembly. J Colloid Interface Sci. 2011;360:1–7.
Chang SM, Lee M, Kim W-S. Preparation of large monodispersed spherical silica particles using seed particle growth. J Colloid Interface Sci. 2005;286:536–42.
Nakabayashi H, Yamada A, Noba M, Kobayashi Y, Konno M, Nagao D. Electrolyte-added one-pot synthesis for producing monodisperse, micrometer-sized silica particles up to 7 microm. Langmuir. 2010;26:7512–5.
Smitha S, Shajesh P, Mukundan P, Warrier KGK. Synthesis of mesoporous hydrophobic silica microspheres through a modified sol–emulsion–gel process. J Sol-Gel Sci Technol. 2008;48:356–61.
Zhokhov AA, Masalov VM, Sukhinina NS, Matveev DV, Dolganov PV, Dolganov VK, Emelchenko GA. Photonic crystal microspheres. Opt Mater. 2015;49:208–12.
Chen S-L, Dong P, Yang G-H, Yang J-J. Characteristic aspects of formation of new particles during the growth of monosize silica seeds. J Colloid Interface Sci. 1996;180:237–41.
Zhang T, Zhang Q, Ge J, Goebl J, Sun M, Yan Y, Liu Y-s, Chang C, Guo J, Yin Y. A self-templated route to hollow silica microspheres. J Phys Chem C. 2009;113:3168–75.
Zhao B, Tian C, Zhang Y, Tang T, Wang F. Size control of monodisperse nonporous silica particles by seed particle growth. Particuology. 2011;9:314–7.
Zhang S, Li G-L, Cong H-L, Yu B, Gai X-Y. Size control of monodisperse silica particles by modified Stöber method. Integr Ferroelectr. 2017;178:52–7.
Gritti F. Impact of straight, unconnected, radially-oriented, and tapered mesopores on column efficiency: a theoretical investigation. J Chromatogr A. 2017;1485:70–81.
Tong W, Song X, Gao C. Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev. 2012;41:6103–24.
Gritti F, Leonardis I, Abia J, Guiochon G. Physical properties and structure of fine core-shell particles used as packing materials for chromatography relationships between particle characteristics and column performance. J Chromatogr A. 2010;1217:3819–43.
Olah E, Fekete S, Fekete J, Ganzler K. Comparative study of new shell-type, sub-2 micron fully porous and monolith stationary phases, focusing on mass-transfer resistance. J Chromatogr A. 2010;1217:3642–53.
Gritti F, Leonardis I, Shock D, Stevenson P, Shalliker A, Guiochon G. Performance of columns packed with the new shell particles, Kinetex-C18. J Chromatogr A. 2010;1217:1589–603.
Dong H, Brennan JD. Rapid fabrication of core-shell silica particles using a multilayer-by-multilayer approach. Chem Commun. 2011;47:1207–9.
Kirkland JJ, Truszkowski FA, Dilks CH Jr, Engel GS. Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules. J Chromatogr A. 2000;890:3–13.
W. Chen, T. Wei, US7846337 B2 Granted Dec.7, 2010, Priority Date Feb.17, 2009.
Chen W, Jiang K, Mack A, Sachok B, Zhu X, Barber WE, Wang X. Synthesis and optimization of wide pore superficially porous particles by a one-step coating process for separation of proteins and monoclonal antibodies. J Chromatogr A. 2015;1414:147–57.
Wan G, Xia H, Wang J, Liu J, Song B, Yang Y, Bai Q. Synthesis of SiO2@SiO2 core-shell microspheres using urea-formaldehyde polymers as the templates for fast separation of small solutes and proteins. Chin Chem Lett. 2018;29:213–6.
Yang X, Wan G, Ma S, Xia H, Wang J, Liu J, Liu Y, Chen G, Bai Q. Synthesis and optimization of SiO2@SiO2 core-shell microspheres by an improved polymerization-induced colloid aggregation method for fast separation of small solutes and proteins. Talanta. 2020;207:120310.
Grün M, Lauer I, Unger KK. The synthesis of micrometer-and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater. 1997;9:254–7.
Bayal N, Singh B, Singh R, Polshettiwar V. Size and fiber density controlled synthesis of fibrous nanosilica spheres (KCC-1). Sci Rep. 2016;6:24888.
Kosuge K, Singh PS. Mesoporous silica spheres via 1-alkylamine templating route. Microporous Mesoporous Mat. 2001;44:139–45.
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.
Chen C-Y, Burkett SL, Li H-X, Davis ME. Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Micropor Mater. 1993;2:27–34.
Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky D. Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science. 1998;279:548–52.
Hollamby MJ, Borisova D, Brown P, Eastoe J, Grillo I, Shchukin D. Growth of mesoporous silica nanoparticles monitored by time-resolved small-angle neutron scattering. Langmuir. 2012;28:4425–33.
Yi Z, Dumée LF, Garvey CJ, Feng C, She F, Rookes JE, Mudie S, Cahill DM, Kong L. A new insight into growth mechanism and kinetics of mesoporous silica nanoparticles by in situ small angle X-ray scattering. Langmuir. 2015;31:8478–87.
Björk EM, Mäkie P, Rogström L, Atakan A, Schell N, Odén M. Formation of block-copolymer-templated mesoporous silica. J Colloid Interface Sci. 2018;521:183–9.
Wang X, Zhang Y, Luo W, Elzatahry AA, Cheng X, Alghamdi A, Abdullah AM, Deng Y, Zhao D. Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted stöber method. Chem Mat. 2016;28:2356–62.
Yue Q, Li J, Luo W, Zhang Y, Elzatahry AA, Wang X, Wang C, Li W, Cheng X, Alghamdi A. An interface coassembly in biliquid phase: Toward core–shell magnetic mesoporous silica microspheres with tunable pore size. J Am Chem Soc. 2015;137:13282–9.
Shen D, Yang J, Li X, Zhou L, Zhang R, Li W, Chen L, Wang R, Zhang F, Zhao D. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014;14:923–32.
Qu Q, Li W, Wu Q, Chen X, Wang F, Asiri AM, Alamry KA. The formation mechanism of the micelle-templated mesoporous silica particles: Linear increase or stepwise growth. Colloid Surf A Physicochem Eng Asp. 2019;577:62–6.
Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H-Q. Synthesis of core-shell silica spheres with tunable pore diameters for HPLC. Mater Lett. 2018;211:40–2.
Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu HQ, Abdullah MA, Alamry KA. Dendritic core-shell silica spheres with large pore size for separation of biomolecules. J Chromatogr A. 2018;1540:31–7.
Qu Q, Li W, Wu Q. Formation mechanism of silica particles with dendritic structure. ChemistrySelect. 2019;4:6656–61.
Zuo C, Chen Y, Chen A. Synthesis and characterization of core/shell structured silica composite microspheres with dendritic mesoporous silica shells. Chin J Mater Res. 2018;32:791–800.
Che S, Garcia-Bennett AE, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Tatsumi T. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat Mater. 2003;2:801–5.
Xia H, Wan G, Chen G, Bai Q. Preparation of superficially porous core-shell silica particle with controllable mesopore by a dual-templating approach for fast HPLC of small molecules. Mater Lett. 2017;192:5–8.
Xia H, Wang J, Chen G, Liu J, Wan G, Bai Q. One-pot synthesis of SiO2@SiO2 core-shell microspheres with controllable mesopore size as a new stationary phase for fast HPLC separation of alkyl benzenes and beta-agonists. Microchim Acta. 2019;186:125.
Cheng L, Cai J, Ke Y. Synthesis of large-pore silica microspheres using dodecylamine as a catalyst, template and porogen agent. J Inorg Organomet Polym Mater. 2019;29:1417–21.
Dong H, Brennan JD. One-pot synthesis of silica core–shell particles with double shells and different pore orientations from their nonporous counterparts. J Mater Chem. 2012;22:13197–203.
Wei T, Mack A, Chen W, Liu J, Dittmann M, Wang X, Barber WE. Synthesis, characterization, and evaluation of a superficially porous particle with unique, elongated pore channels normal to the surface. J Chromatogr A. 2016;1440:55–65.
Min Y, Jiang B, Wu C, Xia S, Zhang X, Liang Z, Zhang L, Zhang Y. 1.9 mum superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules. J Chromatogr A. 2014;1356:148–56.
Min Y, Yang K, Liang Z, Zhang L, Zhang Y. Dandelion-like core–shell silica microspheres with hierarchical pores. RSC Adv. 2015;5:26269–72.
Ahmed A, Ritchie H, Myers P, Zhang H. One-pot synthesis of spheres-on-sphere silica particles from a single precursor for fast HPLC with low back pressure. Adv Mater. 2012;24:6042–8.
Ahmed A, Myers P, Zhang H. Synthesis of nanospheres-on-microsphere silica with tunable shell morphology and mesoporosity for improved HPLC. Langmuir. 2014;30:12190–9.
Qu Q, Xuan H, Zhang K, Chen X, Sun S, Ding Y, Feng S, Xu Q. Rods-on-sphere silica particles for high performance liquid chromatography. J Chromatogr A. 2017;1497:87–91.
Xia H, Liu J, Bai Q. Research progress on core-shell silica stationary phases for high performance liquid chromatography. Chin J Chromatogr. 2020;38:372–82.
Patel DC, Breitbach ZS, Wahab MF, Barhate CL, Armstrong DW. Gone in seconds: praxis, performance, and peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal Chem. 2015;87:9137–48.
Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J Chromatogr A. 2016;1467:2–18.
Kharaishvili Q, Jibuti G, Farkas T, Chankvetadze B. Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. J Chromatogr A. 2016;1467:163–8.
Patel DC, Breitbach ZS, Yu J, Nguyen KA, Armstrong DW. Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography. Anal Chim Acta. 2017;963:164–74.
Spudeit DA, Breitbach ZS, Dolzan MD, Micke GA, Armstrong DW. Superficially porous particle based hydroxypropyl-β-cyclodextrin stationary phase for high-efficiency enantiomeric separations. Chirality. 2015;27:788–94.
Dolzan MD, Spudeit DA, Breitbach ZS, Barber WE, Micke GA, Armstrong DW. Comparison of superficially porous and fully porous silica supports used for a cyclofructan 6 hydrophilic interaction liquid chromatographic stationary phase. J Chromatogr A. 2014;1365:124–309.
Barhate CL, Breitbach ZS, Pinto EC, Regalado EL, Armstrong DW. Ultrafast separation of fluorinated and desfluorinated pharmaceuticals using highly efficient and selective chiral selectors bonded to superficially porous particles. J Chromatogr A. 2015;1426:241–7.
Schmitt K, Woiwode U, Kohout M, Zhang T, Lindner W, Lämmerhofer M. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance. J Chromatogr A. 2018;1569:149–59.
Lomsadze K, Jibuti G, Farkas T, Chankvetadze B. Comparative high-performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core–shell silica particles. J Chromatogr A. 2012;1234:50–5.
Geibel C, Dittrich K, Woiwode U, Kohout M, Zhang T, Lindner W, Lammerhofer M. Evaluation of superficially porous particle based zwitterionic chiral ion exchangers against fully porous particle benchmarks for enantioselective ultra-high performance liquid chromatography. J Chromatogr A. 2019;1603:130–40.
Bezhitashvili L, Bardavelidze A, Mskhiladze A, Gumustas M, Ozkan SA, Volonterio A, Farkas T, Chankvetadze B. Application of cellulose 3,5-dichlorophenylcarbamate covalently immobilized on superficially porous silica for the separation of enantiomers in high-performance liquid chromatography. J Chromatogr A. 2018;1571:132–9.
Bezhitashvili L, Bardavelidze A, Ordjonikidze T, Chankvetadze L, Chity M, Farkas T, Chankvetadze B. Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for the separation of enantiomers in high-performance liquid chromatography. J Chromatogr A. 2017;1482:32–8.
Min Y, Sui Z, Liang Z, Zhang L, Zhang Y. Teicoplanin bonded sub-2 mum superficially porous particles for enantioseparation of native amino acids. J Pharm Biomed Anal. 2015;114:247–53.
Guo H, Wahab MF, Berthod A, Armstrong DW. Mass spectrometry detection of basic drugs in fast chiral analyses with vancomycin stationary phases. J Pharm Anal. 2018;8:324–32.
Folprechtova D, Kozlov O, Armstrong DW, Schmid MG, Kalikova K, Tesarova E. Enantioselective potential of teicoplanin- and vancomycin-based superficially porous particles-packed columns for supercritical fluid chromatography. J Chromatogr A. 2020;1612:460687.
Ismail OH, Antonelli M, Ciogli A, Villani C, Cavazzini A, Catani M, Felletti S, Bell DS, Gasparrini F. Future perspectives in high efficient and ultrafast chiral liquid chromatography through zwitterionic teicoplanin-based 2-μm superficially porous particles. J Chromatogr A. 2017;1520:91–102.
Roy D, Armstrong DW. Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles. J Chromatogr A. 2019;1605:360339.
Hellinghausen G, Readel ER, Wahab MF, Lee JT, Lopez DA, Weatherly CA, Armstrong DW. Mass Spectrometry-Compatible Enantiomeric Separations of 100 Pesticides Using Core-Shell Chiral Stationary Phases and Evaluation of Iterative Curve Fitting Models for Overlapping Peaks. Chromatographia. 2018;82:221–33.
Hellinghausen G, Roy D, Lee JT, Wang Y, Weatherly CA, Lopez DA, Nguyen KA, Armstrong JD, Armstrong DW. Effective methodologies for enantiomeric separations of 150 pharmacology and toxicology related 1 degrees, 2 degrees, and 3 degrees amines with core-shell chiral stationary phases. J Pharm Biomed Anal. 2018;155:70–81.