Preparation of LiNi0.5Mn1.5O4 cathode materials by using different-sized Mn3O4 nanocrystals as precursors
Tóm tắt
High-voltage LiNi0.5Mn1.5O4 with a spinel structure is considered as important cathode materials for high-energy density Li-ion batteries (LIBs). In this study, we investigate the size, structure, and the electrochemical performance of LiNi0.5Mn1.5O4 electrodes prepared by using two different-sized Mn3O4 nanocrystal precursors under different calcination conditions. As the calcination temperature rises, the particle sizes of the acquired LiNi0.5Mn1.5O4 cathode materials can vary from ~ 100 nm to ~ 1 µm, and the morphology changes from nano round shape to truncated octahedral shape. The content of Mn3+ is closely related to the calcination temperature and is affected by the size of Mn precursor. It is found that the LiNi0.5Mn1.5O4 sample prepared by using 50-nm-sized Mn3O4 nanocrystals under a calcination temperature of 800 C exhibits good cycling performance with a capacity retention ratio of 96.1% at 1 C after 200 cycles, while the LiNi0.5Mn1.5O4 sample prepared by using 7-nm-sized Mn3O4 nanocrystals under a calcination temperature of 800 °C shows an excellent rate performance with a capacity retention ratio of 98% after 500 cycles at 10 C. The results show that the size of Mn3O4 precursor is an important parameter that governs the final size and electrochemical performances of LiNi0.5Mn1.5O4 cathode materials.
Tài liệu tham khảo
Fan ES, Li L, Wang ZP, Lin J, Huang YX, Yao Y, Chen RJ, Wu F (2020) Chem Rev 120(14):7020–7063
Manthiram A, Chemelewski K, Lee E-S (2014) Energy Environ Sci 7(4):1339–1350
Liang GM, Peterson VK, See KW, Guo ZP, Pang WK (2020) J Mater Chem A 8:15373–15398
Wang L, Li YH, Han ZD, Chen L, Qian B, Jiang XF, Pinto J, Yang G (2013) J Mater Chem A 1:8385–8397
Wang J, Dong H, Wang P, Fu XL, Zhang NS, Zhao DN, Li SY, Cui XL (2022) J Energy Chem 67:55–64
Kraytsberg A, Ein-Eli Y (2012) Adv Energy Mater 2(8):922–939
Lee B-Y, Krajewski M, Huang M-K, Hasin P, Lin J-Y (2021) J Solid State Electrochem 25:2665–2674
Guo JL, Zhang Y, Fu SX, Yan SP, Lang YQ, Wang L, Liang GC (2021) Ind Eng Chem Res 60(30):11117–11127
Zhao DN, Wang J, Lu HL, Wang P, Liu HN, Li SY (2020) J Power Sources 456:228006
Lee B-Y, Chu C-T, Krajewski M, Michalska M, Lin J-Y (2020) Ceram Int 46(13):20856–20864
Wu Y, Zhang JT, Cao CB, Khalid S, Zhao QQ, Wang R, Butt FK (2017) Electrochim Acta 230:293–298
Hong D, Guo YF, Wang HX, Zhou JG, Fang H-T (2015) J Mater Chem A 3(30):15457–15465
Pang WK, Lu C-Z, Liu C-E, Peterson VK, Lin H-F, Liao S-C, Chen J-M (2016) Phys Chem Chem Phys 18(26):17183–17189
Wang J, Nie P, Xu GY, Jiang JM, W, YT, Fu RR, Dou H, Zhang XG (2018) Adv Funct Mater 28(4):1704808
Hagh NM, Amatucci GG (2014) J Power Sources 256:457–469
Moorhead-Rosenberg Z, Huq A, Goodenough JB, Manthiram A (2015) Chem Mater 27(20):6934–6945
Xiao J, Chen XL, Sushko PV, Sushko ML, Kovarik L, Feng JJ, Deng ZQ, Zheng JM, Graff GL, Nie ZM, Choi DW, Liu J, Zhang J-G (2012) Adv Mater 24(16):2109–2116
Wu HM, Belharouak I, Abouimrane A, Sun Y-K, Amine K (2010) J Power Sources 195(9):2909–2913
Bhandari A, Bhattacharya J (2016) J Electrochem Soc 164(2):A106
Wang L, Chen D, Wang JF, Liu GJ, Wu W, Liang GC (2016) Powder Technol 292:203–209
He YL, Zhang J, Li Q, Hao Y, Yang JW, Zhang LZ, Wang CL (2017) J Alloys Compd 715:304–310
Wang SJ, Li P, Shao LY, Wu KQ, Lin XT, Shui M, Long NB, Wang DJ, Shu J (2015) Ceram Int 41(1):1347–1353
Luo Y, Zhang YX, Yan LQ, Xie JY, Lv TL (2018) ACS Appl Mater Interfaces 10(37):31795–31803
Ma YT, Liu PF, Xie QS, Zhang GB, Zheng HF, Cai YX, Li Z, Wang LS, Zhu ZZ, Mai LQ, Peng DL (2019) Nano Energy 59:184–196
Li S, Ma G, Guo B, Yang ZH, Fan XM, Chen ZX, Zhang WX (2016) Ind Eng Chem Res 55(35):9352–9361
Cheng J, Li XH, Wang ZX, Guo HJ (2016) Ceram Int 42(2):3715–3719
Liu JL, Fan LZ, Qu XH (2012) Electrochim Acta 66(13):302–305
Lu ZP, Liu Y, Lu XJ, Wang H, Yang G, Chao YM, Li WL, Yin F (2017) J Power Sources 360:409–418
Liu GY, Kong X, Sun HY, Wang BS (2014) Ceram Int 40(9):14391–14395
Lin HB, Zhang YM, Hu JN, Wang YT, Xing LD, Xu MQ, Li XP, Li WS (2014) J Power Sources 257:37–44
Li YP, Zhang Q, Xu TH, Wang DD, Pan D, Zhao HL, Bai Y (2018) Ceram Int 44(4):4058–4066
Lee H-W, Muralidharan P, Mari CM, Ruffo R, Kim DK (2011) J Power Sources 196(24):10712–10716
Ma Y, Tang HQ, Tang ZY, Mao WF, Zhang XH (2016) Mater Sci Eng B 213:157–162
Xue Y, Wang ZB, Zheng LL, Yu FD, Liu BS, Zhang Y, Ke K (2015) Sci Rep 5:13299
Nagaraju G, Sekhar SC, Raju GSR, Bharat LK, Yu JS (2017) J Mater Chem A 5(30):15808–15821
Wang L, Chen L, Li YH, Ji HM, Yang G (2013) Powder Technol 235:76–81
Liang WB, Wang P, Ding H, Wang B, Li SY (2021) J Materiomics 7(5):1049–1060
Song J, Shin DW, Lu YH, Amos CD, Manthiram A, Goodenough JB (2012) Chem Mater 24(15):3101–3109
Guo J, Li YJ, Chen YX, Deng SY, Zhu J, Wang SL, Zhang JP, Chang SH, Zhang DW, Xi XM (2019) J Alloys Compd 811:152031
Xiao J, Chen XL, Sushko PV, Sushko ML, Kovarik L, Feng JJ, Deng ZQ, Zheng JM, Graff GL, Nie ZM, Choi DW, Liu J, Zhang JG, Whittingham MS (2012) Adv Mater 24(16):2109–2116
Sun WW, Li YJ, Xie K, Luo SQ, Bai GX, Tan XJ, Zheng CM (2018) Nano Energy 54:175–183
Chang Q, Wei AJ, Li W, Bai X, Zhang LH, He R, Liu ZF (2019) Ceram Int 45(4):5100–5110
Moorhead-Rosenberg Z, Shin DW, Chemelewski KR, Goodenough JB, Manthiram A (2012) Appl Phys Lett 100:213909
Yang L, Ravdel B, Lucht BL (2010) Electrochem Solid-State Lett 13:A95–A97
Lu XJ, Liu C, Zhu WJ, Lu ZP, Li WL, Yang Y, Yang G (2019) Powder Technol 343:445–453
Li L, Sui JS, Chen J, Lu YC (2019) Electrochim Acta 305:433–442
Hai B, Shukla AK, Duncan H, Chen GY (2013) J Mater Chem A 1:759–769
He W, Zheng HF, Ju XK, Li SY, Ma YT, Xie QS, Wang LS, Qu BH, Peng D-L (2017) ChemElectroChem 4(12):3250–3256