Preparation of CaF2:U phosphor by solid-state metathesis reaction

S. S. Pote1, C. P. Joshi2, S. V. Moharil3, P. L. Muthal4, S. M. Dhopte4
1Physics Department, Gurunanak Institute of Engineering and Management, Dahegaon, Nagpur, India
2Physics Department, Shri Ramdeobaba K.N. Engineering College, Nagpur, India
3Department of Physics, Nagpur University, Nagpur, India
4National Environmental Engineering Research Institute (CSIR), Nehru Marg, Nagpur, India

Tóm tắt

CaF2:RE phosphors have received attention of several research workers. CaF2:Sm2+ is well known as a solid-state laser material. CaF2:Dy and CaF2:Tm phosphors are used as phosphors for dosimetry of ionizing radiations through thermoluminescence. A new route to preparation of CaF2 by solid-state metathesis is reported. The method is very fast and CaF2 could be prepared in 10 min. Intense emission attributable to uranate group was observed in synthesized uranium-doped samples.

Tài liệu tham khảo

Masilla Moses Kennedy, S., Thermoluminescence Studies on γ-Irradiated CaF2:Dy:Pb:Na Single Crystals, J. Rare Earths, 2009, vol. 27, no. 2, pp. 187–191. Masilla Moses Kennedy, S., Photoluminescence Studies of γ-Irradiated CaF2:Dy:Pb:Na Single Crystals, J. Lumin., 2008, vol. 128, no. 4, pp. 680–684. Sorokin, P.P. and Stevenson, M.J., Solid-State Optical Maser Using Divalent Samarium in Calcium Fluoride, IBM J. Res. Dev., 1961, vol. 5, no. 1, pp. 56–58. McClure, D.S. and Kis, J.Z., Survey of the Spectra of the Divalent Rare-Earth Ions in Cubic Crystals, J. Chem. Phys., 1963, vol. 39, no. 12, pp. 3251–3257. Kaczmarek, S.M., Tsuboi, T., Ito, M., Boulon, G., and Leniec, G., Optical Study of the Yb3+ to Yb2+ Conversion in CaF2 Crystals, J. Phys. Condens. Matter, 2005, vol. 17, no. 25, pp. 3771–3786. Binder, W., Dislerhoff, S., and Cameron, J.R., Dosimetric Properties of CaF2:Dy, (a) Proc. II Int. Conf. on Lumin. Dosim., Gatlinberg, 1968, pp. 45–53; (b) Health Phys., 1969, vol. 17, no. 4, pp. 613–618. Lucas, A.C., Moss, R.H., and Casper, B.M., Thermoluminescent CaF2:Tm and Method for Its Use, US Patent 4 039 834, 1977 Lucas, A.C. and Casper, B.M., Thermoluminescence of Thulium-Doped Calcium Fluoride, Proc. Int. Conf. on Lumin. Dosim., Sao Paulo (Brazil), 1977, pp. 131–139. Dhopte, S.M., Muthal, P.L., Kondawar, V.K., and Moharil, S.V., Luminescence in CaF2:Eu, J. Lumin., 1992, vol. 54, no. 2, pp. 95–101. Merz, J.L. and Pershan, P.S., Charge Conversion of Irradiated Rare-Earth Ions in CaF2:I, II. Thermoluminescent Spectra, Phys. Rev., 1967, vol. 162, no. 2, pp. 217–234, 235–247. Nambi, K.S.V., Bapat, V.N., and Ganguly, A.K., Thermoluminescence of CaSO4 Doped with Rare Earths, J. Phys. C: Solid State Phys., 1974, vol. 7, no. 23, pp. 4403–4415. Dhopte, S.M., Muthal, P.L., Kondawar, V.K., and Moharil, S.V., On the Role of Europium in CaSO4:Eu Phosphor, J. Lumin., 1991, vol. 50, no. 3, pp. 187–195. Dhopte, S.M., Muthal, P.L., Kondawar, V.K., Sahare, P.D., and Moharil, S.V., Mechanism of Thermoluminescence in CaSO4:Dy, Radiat. Eff. Def. Solids, 1991, vol. 117, no. 4, pp. 337–342. Upadeo, S.V., Gundurao, T.K., and Moharil, S.V., Mechanism of Thermoluminescence in CaF2:Eu and CaSO4: Eu Phosphors, J. Phys. Condens. Matter, 1994, vol. 6, no. 44, pp. 9459–9468. Charusmita, P., Dhopte, S.M., Muthal, P.L., Kondawar, V.K., and Moharil, S.V., Eu3+-Eu2+ Redox Reactions in Bulk and Nano CaF2:Eu, Radiat. Eff. Def. Solids, 2007, vol. 162, no. 9, pp. 651–658. Belsare, P.D., Joshi, C.P., Moharil, S.V., Kondawar, V.K., Muthal, P.L., and Dhopte, S.M., Luminescence of Eu2+ in Some Fluorides Prepared by Reactive Atmosphere Processing, J. Alloys Comp., 2008, vol. 450, nos. 1–2, pp. 468–472. Karbowiak, M., Mech, A., Bednarkiewicz, A., Strek, W., and Kepinski, L., Comparison of Different NaGdF4:Eu3+ Synthesis Routes and Their Influence on Its Structural and Luminescent Properties, J. Phys. Chem. Solids, 2005, vol. 66, no. 6, pp. 1008–1019. Mech, A., Karbowiak, M., Kepinski, L., Bednarkiewicz, A., and Strek, W., Structural and Luminescent Properties of Nano-Sized NaGdF4:Eu3+ Synthesized by Wet-Chemistry Route, J. Alloys Comp., 2004, vol. 380, nos. 1–2, pp. 315–320. Karbowiak, M., Mech, A., Bednarkiewicz, A., and Strek, W., Structural and Luminescent Properties of Nanostructured KGdF4:Eu3+ Synthesised by Coprecipitation Method, J. Alloys Comp., 2004, vol. 380, nos. 1–2, pp. 321–326. Boutinaud, P., Mahiou, R., Cousseins, J.-C., and Bouderbala, M., Preparation of Fluorides at 80°C in the NaF-(Y, Yb, Pr)F3 System, J. Mater. Chem., 1999, vol. 9, no. 1, pp. 125–128. Parhi, P. and Manivannan, V., Novel Microwave Mediated Solid-State Metathesis Synthesis of KMF3 (M = Zn, Mn, Mg, Co), Mater. Lett., 2008, vol. 62, no. 19, pp. 3468–3470. Parhi, P., Kramer, J., and Manivannan, V., Microwave Initiated Hydrothermal Synthesis of Nano-Sized Complex Metal Fluorides KMF3 (M = Zn, Mn, Co, Fe), J. Mater. Sci., 2008, vol. 43, no. 16, pp. 5540–5545. Parhi, P. and Manivannan, V., Novel Microwave Mediated Solid-State Metathesis Synthesis and Characterization of Lanthanide Phosphates and Vanadates, LMO4 (L = Y, La and M = V, P), Solid State Sci., 2008, vol. 10, no. 8, pp. 1012–1019. Campbell, J.A., Laval, J.P., Fernandez-Diaz, M.T., and Foster, M., The Defect Structure of CaF2:U3+, J. Alloys Comp., 2011, vols. 323–324, pp. 111–114. Manson, N.B., Shah, G.A., and Runciman, W.A., Zeeman Splitting of a Fluorescing Level of CaF2:U6+, Solid State Commun., 1975, vol. 16, no. 5, pp. 645–649. Nichols, E.L. and Slattery, M.K., Uranium as an Activator, J. Opt. Soc. Am., 1926, vol. 12, no. 5, pp. 449–465. Kroger, F.A., The Incorporation of Uranium in Calcium Fluoride, Physica, 1948, vol. 14, no. 7, p. 488. Runciman, W.A., Atomic Configurations in Luminescent Centers, Brit. J. App. Phys. Suppl., 1955, vol. 6, no. S4, pp. S78–S83. Nicholas, J.V., Luminescence of Hexavalent Uranium in CaF2 and SrF2 Powders, Phys. Rev., 1967, vol. 155, no. 2, pp. 151–156. Lam, R.U.E. and Blasse, G., The Luminescence of Uranium-Activated Tungstates and Molybdates with Scheelite Structure, J. Chem. Phys., 1980, vol. 72, no. 3, pp. 1803–1808. Brittain, H.G. and McAllister, W.A., Concentration Dependencies in the Luminescence of Li4WO5:U, J. Lumin., 1984, vol. 29, nos. 5–6, pp. 101–110. Krol, D.M., de Jong, K.P., and Blasse, G., The Luminescence Spectra of Li4WO5:U and MgWO4:U, Chem. Phys. Lett., 1981, vol.77, no. 1, pp. 1–5. Bleijenberg, K.C. and Breddels, P.A., QMQSCC Calculations on the Thermal Quenching of the Uranate Luminescence in Uranium-Doped Tungstates with Perovskite Structure, J. Chem. Phys., 1980, vol. 72, no. 6, pp. 3539–3546. Xu, Y., Chen, L., Li, Y., Song, G., Wang, Y., Zhuang, W., and Long, Z., Phosphor-Conversion White Light Using InGaN Ultraviolet Laser Diode, Appl. Phys. Lett., 2008, vol. 92, no. 2, pp. 021129–021131. Braune, B., Bogner, G., Brunner, H., Kraeuter, G., and Hoehn, K., New Developments in LED Lighting by Novel Phosphors, Proc. SPIE, 2003, vol. 4996, pp. 87–94. Ugemuge, N.S., Tajne, D.S., Dhopte, S.M., Muthal, P.L., and Moharil, S.V., Preparation of CaF2 Based Phosphors by Solid State Metathesis, Physica B, 2011, vol. 406, no. 1, pp. 45–47. Muke, A.M., Muthal, P.L., Dhopte, S.M., and Moharil, S.V., Solid State Metathesis of CaSO4:Eu2+ Phosphor, J. Lumin., 2012, vol. 132, no. 2, pp. 342–344.