Preparation of BiVO4/ZnO composite film with enhanced visible-light photoelectrocatalytic activity
Tài liệu tham khảo
Jiang, 2017, Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites, J. Colloid Interface Sci., 494, 130, 10.1016/j.jcis.2017.01.064
Niu, 2017, Efficient Carrier Separation in Graphitic Zinc Oxide and Blue Phosphorus van der Waals Heterostructure, J. Phys. Chem. C., 121, 3648, 10.1021/acs.jpcc.6b12613
Li, 2014, Enhanced photocatalytic performance of Au–Ag alloy modified ZnO nanocomposite films, J. Alloy. Compd., 586, 663, 10.1016/j.jallcom.2013.10.085
Huang, 2011, Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries, Electrochim. Acta, 56, 4960, 10.1016/j.electacta.2011.03.129
Gurylev, 2017, Hydrogenated ZnO nanorods with defect-induced visible light-responsive photoelectrochemical performance, Appl. Surf. Sci., 411, 279, 10.1016/j.apsusc.2017.03.146
Zhai, 2017, Visible light driven photocatalytic activity of Fe-doped ZnO nanocrystals, Funct. Mater. Lett., 10, 1750002, 10.1142/S1793604717500023
Kumar, 2014, Structural, optical and magnetic characterization of Ru doped ZnO nanorods, J. Alloy. Compd., 588, 705, 10.1016/j.jallcom.2013.11.137
Chen, 2016, Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts, Nat. Commun., 7, 12273, 10.1038/ncomms12273
Wang, 2015, Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting, Nanoscale, 7, 77, 10.1039/C4NR03735A
Zheng, 2009, Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity, Inorg. Chem., 48, 1819, 10.1021/ic802293p
Lahmar, 2017, On the electrochemical synthesis and characterization of p-Cu2O/n-ZnO heterojunction, J. Alloy. Compd., 78, 36, 10.1016/j.jallcom.2017.05.054
Wang, 2011, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4, Energy Environ. Sci., 4, 2922, 10.1039/c0ee00825g
Luo, 2012, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity, J. Phys. Chem. C., 116, 8111, 10.1021/jp2113329
Wei, 2017, Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: enhanced photocatalytic and gas-sensing properties, J. Colloid Interface Sci., 498, 263, 10.1016/j.jcis.2017.03.072
Jiang, 2011, ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity, J. Phys. Chem. C., 115, 20555, 10.1021/jp205925z
Wang, 2010, Aligned ZnO/CdTe core−shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties, ACS Nano, 4, 3302, 10.1021/nn1001547
Zhang, 2014, Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO4 photoanodes for solar water oxidation, Energy Environ. Sci., 7, 1402, 10.1039/C3EE44031A
Yang, 2017, Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting, Nano Energy, 32, 232, 10.1016/j.nanoen.2016.12.039
Moniz, 2014, 1D Co‐Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage, Adv. Energy Mater., 4, 1066, 10.1002/aenm.201301590
Yan, 2016, 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting, Dalton Trans., 45, 11346, 10.1039/C6DT02027E
Fu, 2014, Effective visible-excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity, ACS Appl. Mater. Interfaces, 6, 18550, 10.1021/am505651d
Tolod, 2017, Recent advances in the BiVO4 photocatalyst for sun-driven water oxidation: top-performing photoanodes and scale-up challenges, Catalysts, 7, 13, 10.3390/catal7010013
Xia, 2017, High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application, Appl. Catal. B, 204, 127, 10.1016/j.apcatb.2016.11.015
Daghrir, 2013, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11, 209, 10.1007/s10311-013-0404-8
Saadati, 2016, Influence of parameters on the photocatalytic degradation of tetracycline in wastewater, A review, Crit. Rev. Environ. Sci. Technol., 46, 757, 10.1080/10643389.2016.1159093
Xie, 2010, Physiological and potential genetic toxicity of chlortetracycline as an emerging pollutant in wheat (Triticum aestivum L.), Environ. Toxicol. Chem., 29, 922, 10.1002/etc.79
Michalova, 2004, Tetracyclines in veterinary medicine and bacterial resistance to them, Vet. Med. Czech, 49, 79, 10.17221/5681-VETMED
Jing, 2014, Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar, Chem. Eng. J., 248, 168, 10.1016/j.cej.2014.03.006
Niu, 2013, Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline: kinetics, mechanisms and toxicity assessment, Chemosphere, 93, 1, 10.1016/j.chemosphere.2013.04.043
Brinzila, 2012, Electrodegradation of tetracycline on BDD anode, Chem. Eng. J., 209, 54, 10.1016/j.cej.2012.07.112
Ocampo-Pérez, 2012, Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase, Chem. Eng. J., 213, 88, 10.1016/j.cej.2012.09.072
Huang, 2016, Biodegradation of tetracycline by the yeast strain Trichosporon mycotoxinivorans XPY-10, Prep. Biochem. Biotechnol., 46, 15, 10.1080/10826068.2014.970692
Zhu, 2013, Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere, 92, 925, 10.1016/j.chemosphere.2013.02.066
Martins, 2017, Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline, Ceram. Int., 43, 4411, 10.1016/j.ceramint.2016.12.088
Homem, 2011, Degradation and removal methods of antibiotics from aqueous matrices–a review, J. Environ. Manag., 92, 2304, 10.1016/j.jenvman.2011.05.023
Jiao, 2008, Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria, Chemosphere, 73, 377, 10.1016/j.chemosphere.2008.05.042
Liu, 2014, Removal of trace antibiotics from wastewater: a systematic study of nanofiltration combined with ozone-based advanced oxidation processes, Chem. Eng. J., 240, 211, 10.1016/j.cej.2013.11.057
Liu, 2009, Comparison of photoelectrochemical properties of TiO2-nanotube-array photoanode prepared by anodization in different electrolyte, Environ. Chem. Lett., 7, 363, 10.1007/s10311-008-0180-z
Y. Zhang, N. Qin, J. Li, S. Han, P. Li, G. Zhao, Facet exposure-dependent photoelectrocatalytic oxidation kinetics of bisphenol A on nanocrystalline {001} TiO2/carbon aerogel electrode, Appl. Catal. B 216 (2 017) 30-40.
Fan, 2014, Liquid phase deposition of ZnO film for photoelectrocatalytic degradation of p-nitrophenol, Mater. Sci. Semicond. Process., 17, 104, 10.1016/j.mssp.2013.09.005
Cheng, 2017, Liquid phase deposition of α-Fe2O3/ZnO heterojunction film with enhanced visible-light photoelectrocatalytic activity for pollutant removal, J. Electrochem. Soc., 164, H726, 10.1149/2.0241712jes
Meng, 2017, MoS2 quantum dots-interspersed Bi2WO6 heterostructures for visible light-induced detoxification and disinfection, Appl. Catal. B, 210, 160, 10.1016/j.apcatb.2017.02.083
Chen, 2017, Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation, Appl. Catal. B, 200, 330, 10.1016/j.apcatb.2016.07.021
Zhang, 2016, Facile synthesis of ternary Ag/AgBr-Ag2CO3 hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light, J. Hazard. Mater., 314, 78, 10.1016/j.jhazmat.2016.04.032