Preparation, characterization of chitosan/bamboo charcoal/poly(methacrylate) composite beads

Bulletin of Materials Science - Tập 40 - Trang 1179-1187 - 2017
Dorothy Caminos-Peruelo1,2, Wei-Chieh Wang3, Tsung-Shune Chin4, Regina C So2, Ronaldo M Fabicon2, Ming-Fa Hsieh5
1Chemistry Department, Xavier University–Ateneo de Cagayan, Cagayan de Oro City, Philippines
2Department of Chemistry, Ateneo de Manila University, Quezon City, Philippines
3ITRI South, Industrial Technology Research Institute, Tainan City, Taiwan
4Department of Materials Science and Engineering, Feng Chia University, Taichung City, Taiwan
5Department of Biomedical Engineering, Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan

Tóm tắt

Preparation and characterization of a low-cost, novel steam-activated bamboo charcoal (BC) and poly(methacrylate) (PMAA) bound with chitosan (CTS) to form chitosan/bamboo charcoal/poly(methacrylate) (CTS/BC/PMAA) composite beads is reported for the first time in this paper. The characteristics are revealed by techniques such as X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Brunauer Emmett Teller (BET), solution pH and pH at point of zero charge $$(\hbox {pH}_{\mathrm {pzc}})$$ . The composite beads possessed a dominant acidic surface group of 0.663 mmol $$\hbox {g}^{\mathrm {-1}}$$ , as revealed by Boehm titration method. This acidity was confirmed by its solution pH of 6.46; $$\hbox {pH}_{\mathrm {pzc}}$$ of 6.70 and increase in oxygen surface via XPS analysis. $$\hbox {N}_{\mathrm {2}}$$ adsorption–desorption isotherms at 77 K of the beads revealed high BET surface area (SA) of 681.15 $$\hbox {m}^{\mathrm {2}}\hbox {g}^{\mathrm {-1}}$$ . Langmuir model affords a SA of 773.34 $$\hbox {m}^{\mathrm {2}}\hbox {g}^{\mathrm {-1}}$$ . SEM showed the microporous nature of the composite beads. The properties of CTS/BC/PMAA composite beads were compared to CTS/BC and neat BC. Thermal stability and successful coating of 5.1 wt% of PMAA and 6.8 wt% of CTS to CTS/BC/PMAA beads were shown by DSC and TGA analyses. The composite beads showed low carbon particle released at pH 7.4 and 6.8. Furthermore, dynamic adsorption revealed that CTS/BC/PMAA composite beads can be used to capture a polar substance, such as creatinine.

Tài liệu tham khảo

Li Y, Shao J, Wang X, Deng Y, Yang H and Chen H 2014 Energy Fuels 28 5119 Lei H, Wang Y and Huo J 2015 Micropor. Mesopor. Mat. 210 39 Zhu J, Jia J, Kwong F L, Ng D H L and Tjong S C 2012 Biomass Bioenergy 36 12 Mohan D, Sarswat A, Ok Y S and Pittman C U Jr 2014 Bioresour. Technol. 160 191 Lou C W, Lu C T, Lin C W, Chen A P, Jang S B and Lin J H 2012 J. Eng. Fiber. Fabr. 7 109 Hsieh M F, Wen H W, Shyu C L, Wang W C and Chen W C 2007 J. Med. Biological Eng. 27 47 Chen K S, Chou C Y, Liao S C, Wu H M and Tsai H T 2012 Biomed. Eng.: Appl. Basis Commun. 24 171 Hsieh M F, Wen H W, Shyu C L, Chen S H, Li W T, Wang W C et al 2010 J. Biomed. Mater. Res. Part A 94 1133 Grainger D W and Castner 2011 In: P Ducheyne, K Healy, D Hutmacher, D Grainger, C J Kirkpatrick (eds). Methods of analysis, vol 3, p 2 Elkheshein S, Zia H, Needham T E, Badaway A and Luzzi L A 1992 J. Microencapsul. 9 41 Jager M and Wilke A 2003 J. Biomater. Sci., Polym. Ed. 14 1283 Miao J, Zhang F, Takieddin M, Mousa S and Linhardt R J 2012 Langmuir 28 4396 Bach M T 2007 Ph.D. Thesis, University of Florida Lei L, Quinlavan P A and Knappe D R U 2002 Carbon 40 2085 Moreno-Castilla C 2000 Carbon 38 1995 Sreenivasan K R S 1997 J. Appl. Polym. Sci. 66 2539 Subrahmanyam S, Sergey A Piletsky, Elena V Piletska, Beining Chen, Kal Karim and Anthony P F Turner 2001 Biosens. Bioelectron. 16 631 Spivak D A 2005 Adv. Drug Deliv. Rev. 57 1779 El-Hefian E A, Elham S Elgannoudi, Azizah Mainal and Abdul Haamid Yahaya 2010 Turk. J. Chem. 34 47 El-Hefian E A, Khan R A and Yahaya A H 2008 J. Chem. Soc. Pak. 30 529 Suthamnoi S K 2009 J. Metals Mater. Minerals 19 9 Roman S, Gonzalez J F, Gonzalez-Garcia C M and Zamora F 2008 Fuel Process. Technol. 89 715 Rodríguez Reinoso F, Molina-Sabio M and González M T 1995 Carbon 33 15 Carrot P J M and Freeman J J 1991 Carbon 29 499 Tomków K, Siemieniewska T, Czechowski F and Jankowska A 1977 Fuel Process. Technol. 56 121 Miao J, Zhang F, Takieddin M, Mousa S and Linhardt R J 2012 Langmuir 28 4396 Huzzein M Z, Tarmizi R S H, Zainal Z and Ibraiiim R 1996 Carbon 34 1447 Al-Degs Y 2000 Wat. Res. 34 927 Rodríguez-Reinoso F, Molina-Sabio M and González M T 1995 Carbon 33 15 Boehm H P 1996 Adv. Catal. 16 179 McCusker L B, Liebau F and Engelhardt G 2001 Pure Appl. Chem. 73 381 Laszlo K, Tombacz E and Josepovits K 2001 Carbon 39 1217 Laszlo K and Szucs A 2001 Carbon 39 1945 Dambies L, Domard T V A and Guibal E 2001 Biomacromol. 2 1198 Turner N W, Holdsworth C I, Donne S W, Mc Cluskey A and Bowyer M C 2010 New J. Chem. 34 686 El-Hefian E A, Elgannoudi E S, Mainal A and Yahaya A H 2008 J. Chem. Soc. Pak. 30 529 Sakurai K M T and Takahashi T 2000 Polymer 41 7051 Zeng M F and Xu C 2004 J. Membr. Sci. 230 175 Al-Rawajfeha A E and Al-Rhael I 2006 Jordan J. Chem. 1 155 Wan M W, Kan C C, Rogel B and Dalida M 2010 Carbohyd. Polym. 80 891 Landry M R M, Landry C J T, Teegarden D M, Colby R H, Long T E and Henrichs R M 1994 J. Appl. Polym. Sci. 54 991 Morley D and Chang T 1987 Biomat. Art. Cells Art. Org. 15 617 Chandy T and Sharma C P 1993 J. Microencapsul. 10 475