Preparation and thermal performance of a novel alloy microencapsulated phase change material (MEPCM)/ceramic composite
Tài liệu tham khảo
Pablos-Heredero, 2015
Zamfirescu, 2013, Water splitting with a dual photo-electrochemical cell and hybrid catalysis for enhanced solar energy utilization, Int. J. Energy Res., 37, 10.1002/er.2910
Kudelin, 2021, Wind ENERGY in Russia: the current state and development trends, Energy Strategy Rev., 34, 100627, 10.1016/j.esr.2021.100627
Blanco, 2011, The economics of wind energy, Renew. Sustain. Energy Rev., 13, 1372
Kumar, 2020, Resources and utilization of geothermal energy in India: an eco-friendly approach towards sustainability, Mater. Today Proc., 26
Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev., 13, 318, 10.1016/j.rser.2007.10.005
Sar, 2010, Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid micro-PCM for thermal energy storage, Appl. Energy, 87, 1529, 10.1016/j.apenergy.2009.10.011
Jiang, 2019, Skeleton materials for shape-stabilization of high temperature salts based phase change materials: a critical review, Renew. Sustain. Energy Rev., 119, 109539, 10.1016/j.rser.2019.109539
Li, 2019, 238
Ayyappan, 2016, Performance improvement studies in a solar greenhouse drier using sensible heat storage materials, Heat Mass Tran., 52, 459, 10.1007/s00231-015-1568-5
Khosroshahi, 2021, Investigation of storage rotation effect on phase change material charging process in latent heat thermal energy storage system, J. Energy Storage, 36, 102442, 10.1016/j.est.2021.102442
Abhat, 1983, Low temperature latent heat thermal energy storage: heat storage materials, Sol. Energy, 30, 313, 10.1016/0038-092X(83)90186-X
Zhang, 2016, A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement, Appl. Energy, 165, 472, 10.1016/j.apenergy.2015.12.043
Jaguemont, 2018, Phase-change materials (PCM) for automotive applications: a review, Appl. Therm. Eng., 132, 308, 10.1016/j.applthermaleng.2017.12.097
Meng, 2017, Preparation and characterization of CA-MA eutectic/silicon dioxide nanoscale composite phase change material from water glass via sol-gel method, Wuhan Univ. Technol., 32, 1048, 10.1007/s11595-017-1709-4
Ma, 2014, Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method, Appl. Energy, 132, 568, 10.1016/j.apenergy.2014.07.054
Song, 2015, Structural and phase change characteristics of inorganic microencapsulated core/shell Al-Si/Al2O3 micro-particles during thermal cycling, Ceram. Int., 41, 10689, 10.1016/j.ceramint.2015.05.001
Hu, 2011, In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles, Nanoscale, 3, 3700, 10.1039/c1nr10394f
Sheng, 2018, Development of a microencapsulated Al-Si phase change material with high-temperature thermal stability and durability over 3000 cycles, J. Mater. Chem., 6, 18143, 10.1039/C8TA04708A
Han, 2019, Thermal properties of Al-Si/Al2O3 core-shell particles prepared by using steam hydration method, J. Alloys Compd., 817, 152801, 10.1016/j.jallcom.2019.152801
Lai, 2016, Tunable endothermic plateau for enhancing thermal energy storage obtained using binary metal alloy particles, Nano Energy, 25, 218, 10.1016/j.nanoen.2016.02.058
Fang, 2016, Preparation, microstructure and thermal properties of Mg-Bi alloys as phase change materials for thermal energy storage, Appl. Therm. Eng., 92, 187, 10.1016/j.applthermaleng.2015.09.090
Navarrete, 2017, Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature, Sci. Rep., 7, 10.1038/s41598-017-17841-w
Lai, 2016, 218
Labhsetwar, 2012, Ceramics in environmental catalysis: applications and possibilities, Chin. J. Catal., 33, 1611, 10.1016/S1872-2067(11)60440-3
Patil, 2019, Au sensitized La-CeO2 catalyst coated ceramics monoliths for toluene catalysis application, Mater. Chem. Phys., 240, 122269, 10.1016/j.matchemphys.2019.122269
Zalba, 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng., 23, 251, 10.1016/S1359-4311(02)00192-8
Medrano, 2010, State of the art on high-temperature thermal energy storage for power generation. Part 2—case studies, Renew. Sustain. Energy Rev., 14, 56, 10.1016/j.rser.2009.07.036
Gokon, 2008, High-temperature carbonate/MgO composite materials as thermal storage media for double-walled solar reformer tubes, Sol. Energy, 82, 1145, 10.1016/j.solener.2008.05.011
Gokon, 2009, Double-walled reformer tubes using high-temperature thermal storage of molten-salt/MgO composite for solar cavity-type reformer, Int. J. Hydrogen Energy, 34, 7143, 10.1016/j.ijhydene.2009.06.047
Cheng, 2018, In situ synthesis and mechanism of mullite-silicon carbide composite ceramics for solar thermal storage, Ceram. Int., 44, 18541, 10.1016/j.ceramint.2018.07.076
Xue, 2018, Improvement of energy storage properties in niobate glass-ceramics via the adjustment of glass/ceramic ratios, J. Mater. Sci. Mater. Electron., 29, 16758, 10.1007/s10854-018-9769-6
Jiang, 2015, Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage, Energy Convers. Manag., 106, 165, 10.1016/j.enconman.2015.09.035
Jiang, 2018, Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I), Sol. Energy Mater. Sol. Cell., 178, 74, 10.1016/j.solmat.2017.12.034
Ran, 2021, Thermal properties of eutectic salts/ceramics/expanded graphite composite phase change materials for high-temperature thermal energy storage, Sol. Energy Mater. Sol. Cell., 225
Ruiping, 2015
Han, 2020, Preparation and characterization of a heat storage ceramic with Al-12 wt% Si as the phase change material, Ceram. Int., 46, 28042, 10.1016/j.ceramint.2020.07.299
Zhu, 2021, Synthesis and characterization of a novel high durability alloy microcapsule for thermal energy storage, Sol. Energy Mater. Sol. Cell., 230
Zou, 2018, Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery, Int. J. Heat Mass Tran., 120, 33, 10.1016/j.ijheatmasstransfer.2017.12.024
Pietrak, 2014, A review of models for effective thermal conductivity of composite materials, J. Power Technol., 95, 14
Maxwell J. A treatise on electricity and magnetism[J]. Nature, 7(182):478-480.
Eucken, 1940, Allgemeine Gesetzmigkeiten für das Wrmeleitvermgen verschiedener Stoffarten und Aggregatzustnde, Forschung Auf Dem Gebiet Des Ingenieurwesens A, 11, 6, 10.1007/BF02584103
Devpura, 2000, Percolation theory applied to the analysis of thermal interface materials in flip-chip technology[C]. Thermal and Thermomechanical Phenomena in Electronic Systems
Chiew, 1983, The effect of structure on the conductivity of a dispersion, J. Colloid Interface Sci., 94, 90, 10.1016/0021-9797(83)90238-2
Singh, 1998, Heat conduction and a porosity correction term for spherical and cubic particles in a simple cubic packing, J. Phys. D Appl. Phys., 31, 1681, 10.1088/0022-3727/31/14/011
Xiao, 2013, Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage, Energy Convers. Manag., 73, 86, 10.1016/j.enconman.2013.04.007
Jiang, 2021, Preparation and characterization of a heat storage material: shape-stabilized KNO3 using a modified diatomite-based porous ceramic as the skeleton, Ceram. Int., 47, 26301, 10.1016/j.ceramint.2021.06.040
Jiang, 2021, Preparation and characterization of a heat storage material: shape-stabilized KNO3 using a modified diatomite-based porous ceramic as the skeleton, Ceram. Int., 47, 26301, 10.1016/j.ceramint.2021.06.040
Deng, 2017, Preparation and characterization of KNO3/diatomite shape-stabilized composite phase change material for high temperature thermal energy storage, J. Mater. Sci. Technol., 33, 198, 10.1016/j.jmst.2016.02.011
Jianfeng, 2009, Molten salts/ceramic-foam matrix composites by melt infiltration method as energy storage material, J. Wuhan Univ. Technol., 141