Preparation and performance of environmental friendly Sulphur-Free propellant for fireworks

Applied Thermal Engineering - Tập 126 - Trang 987-996 - 2017
Yue Sun1, Zhiyue Han1, Zhiming Du1, Zengyi Li1, Xiaomin Cong1
1State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China

Tài liệu tham khảo

Ambekar, 2017, Characterization of display pyrotechnic propellants: colored light[J], Appl. Therm. Eng., 110, 1066, 10.1016/j.applthermaleng.2016.09.040 Dutcher, 1999, Effects of indoor pyrotechnic displays on the air quality in the Houston astrodome[J], J. Air Waste Manage. Associat., 49, 156, 10.1080/10473289.1999.10463790 Moreno, 2006, Recreational atmospheric pollution episodes: inhalablemetalliferous particles from firework displays[J], Atmosp. Environm., 41, 913 Wei, 2015, Effect of fireworks display on air quality during the spring festival in pearl river delta [J], Environm. Sci., 36, 4358 Zhenbang, 2008 H. Fukui, T. Nagaishi, Y. Sano, New, etc, New lift powder for fireworks[J], Sci. Tech. Energ. Mater. (2010) 71 (3-4) 59–64. Sano, 2014, Characterization of a Fe2O3/Al/polyoxymethylene thermite composition[J], Sci. Tech. Energ. Mater., 75, 77 X.Y. Lin, Y.J. Liu, S. Shi, R.M. Pan, Charging technology of micropores smokeless propellant for firework[J], Nanjing Li Gong Daxue Xuebao. (2011) 35 (4) 552–557. Liu, 2011, Design and performance of smoke propellant for fireworks, Chinese J. Energ. Mater., 19, 176 Preparation, pore formation mechanism and combustion performance of microporous balls by one step method and its application research [D], Nanjing: Nanjing University of Science and Technology. 2013. Yu, 2012, Thermal hazard research of smokeless fireworks[J], J. Therm. Analys. Calorim., 109, 1151, 10.1007/s10973-012-2367-6 sulphur-free firework propellant comprises potassium perchlorate, charcoal, potassium hydrogen phthalate and resin, CN103739412-A[P]. 2014. K. XIN, Y. XU, J. YI, Firework propellant comprises potassium hydrogen phthalate, oxidant, perlite powder, and adhesive. CN103819293-A[P], 2014. B. GONG, C. JIANG, S. JIANG, et al. sulphur-free environment-friendly propellant used for, e.g. fireworks comprises potassium hydrogen phthalate, rod carbon powder, epoxy resin, graphite, and lime. CN104557352-A [P], 2015. Sijimol, 2014, Environmental impacts of perchlorate with special reference to fireworks—a review, Environm. Monitor. Assess., 186, 7203, 10.1007/s10661-014-3921-4 Hadi Fauzi, Hendrik S.C. Metselaar, T.M.I. Mahlia, et al., Preparation and thermal characteristics of eutectic fatty acids/Shorea javanica composite for thermal energy storage 2016,100: 62-67. Du. Zhiming, Zhang Yinghao, Han Zhiyue, etc. 4,5-bis (5-tetrazolyl) -1,2,3-triazole: Synthesis and properties[J], Propellants, Explosives Pyrotechnics. (2015) 40 954–959. Zhu Min, Chen Xiong, Zhou Chang-sheng, etc. Experimental and numerical investigations on the decomposition and combustion characteristics of composite propellant with Mg/Al particles additives[J], Appl. Therm. Eng., (2017) 111 863–875. Xin, 2004 Ying, 2010, Effects of particle size and type of nitramine on the combustion performance of BAMO-AMMO-based ETPE propellant [J], Energ. Mater., 18, 397 Zhiyue Han, Zhihua Zhao, Zhiming Du, etc. Bis(1,5-diamino-4-methyl-tetrazolium) hydrazinetetrazolate: synthesis, structure and energetic properties[J], Rsc Advances. (2014) 4 (64) 33724–33729. Wang Qianyou, Feng Xiao, Wang Shan, etc. Metal-organic framework templated synthesis of copper azide as the primary explosive with low electrostatic sensitivity and excellent initiation Ability[J], Adv. Mater. 2016, 28:5837-5843. Liu, 2014, Particle refinement and graphene doping effects on thermal properties of potassium picrate[J], J. Therm. Analys. Calorim., 118, 561, 10.1007/s10973-014-3980-3 GB 19593-2015, Fireworks [S]. General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China, 2015. Kissinger, 1957, Reaction kinetics in differential thermal analysis, Analyt. Chem., 1702–6 Xing, 2012, Specific heat capacity, thermal behavior, and thermal hazard of 2,4-dinitroanisole, Propell., Explos., Pyrotech., 37, 179, 10.1002/prep.201000077 Shamsipur, 2011, An investigation on decomposition kinetics and thermal properties of copper-fueled pyrotechnic compositions, Combust. Sci. Tech., 183, 575, 10.1080/00102202.2010.523032 Zhang, 1994, The estimation of critical temperature of thermal explosion for energetic materials using non-isothermal DSC, Thermochimica Acta., 244, 171, 10.1016/0040-6031(94)80216-5