Preparation and evaluation of stable nanofluids for heat transfer application: A review

Experimental Thermal and Fluid Science - Tập 79 - Trang 202-212 - 2016
S. K. Sharma1, Shipra Mital Gupta2
1USCT, Guru Gobind Singh Indraprastha University, Dwarka, India
2USBAS, Guru Gobind Singh Indraprastha University, Dwarka, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wu, 2009, Thermal energy storage behavior of Al2O3/H2O nanofluids, Thermochim. Acta, 73, 483

Beck, 2008

Hosseinalipour, 2010, Heat transfer enhancement using nanofluids in laminar impinging jet flows

Gupta, 2011, Laminar flow in helical coils: a parametric study, Ind. Eng. Chem. Res., 50, 1150, 10.1021/ie101752z

Akbaridoust, 2013, Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall temperature using dispersion model, Int. J. Heat Mass Transfer, 58, 480, 10.1016/j.ijheatmasstransfer.2012.11.064

Seyyedvalilu, 2015, The effect of geometrical parameters on heat transfer and hydro dynamical characteristics of helical exchanger, Int. J. Recent Adv Mech. Eng., 4, 10.14810/ijmech.2015.4104

Prabhanjan, 2002, Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger, Int. Commun. Heat Mass, 29, 185, 10.1016/S0735-1933(02)00309-3

Wen, 2002, Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions, Int. J. Heat Mass Transfer, 45, 1739, 10.1016/S0017-9310(01)00251-4

Vazquez, 2013, Surface effects of ribbon heaters on critical heat flux in nanofluid pool boiling, Int. Commun. Heat Mass, 41, 1, 10.1016/j.icheatmasstransfer.2012.11.008

Hwang, 2006, Thermal conductivity and lubrication characteristics of nanofluids, Curr. Appl. Phys., 6, e67, 10.1016/j.cap.2006.01.014

Zhu, 2007, Novel synthesis and thermal conductivity of CuO nanofluid, J. Phys. Chem. C, 111, 1646, 10.1021/jp065926t

Tavman, 2008, Experimental investigation of viscosity and thermal conductivity of suspensions containing nano-sized ceramic particles, Arch. Mater. Sci. Eng., 34, 99

Duangthongsuk, 2009, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp. Therm. Fluid Sci., 33, 706, 10.1016/j.expthermflusci.2009.01.005

Harish, 2012, Enhanced thermal conductivity of ethylene glycol with single-walled carbon nano-tube inclusions, Int. J. Heat Mass Transfer, 55, 3885, 10.1016/j.ijheatmasstransfer.2012.03.001

Murshed, 2005, Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005

Ding, 2007, Heat transfer intensification using nanofluids, KONA Powder Part. J., 25, 23, 10.14356/kona.2007006

Li, 2008, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids, Thermochim. Acta, 469, 98, 10.1016/j.tca.2008.01.008

Timofeeva, 2009, Particle shape effects on thermophysical properties of alumina nanofluids, J. Appl. Phys., 106, 1, 10.1063/1.3155999

Wang, 2009, Influence of pH and SDBS on the stability and thermal conductivity of nanofluids, Energy Fuels, 23, 2684, 10.1021/ef800865a

Buongiorno, 2009, A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106, 1, 10.1063/1.3245330

Kleinstreuer, 2011, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review, Nanoscale Res. Lett., 6, 229, 10.1186/1556-276X-6-229

Mishra, 2013, Thermal conductivity of nanofluids-an extensive literature review, Int. J. Eng. Res. Technol., 2, 734

Yang, 2011, Preparation and stability of Al2O3 nano-particle suspension of ammonia-water solution, Appl. Therm. Eng., 31, 3643e, 10.1016/j.applthermaleng.2010.11.031

Jha, 2009, Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids, J. Appl. Phys., 106, 084317, 10.1063/1.3240307

Kim, 2009, Convective heat transfer characteristics of nano-fluids under laminar and turbulent flow conditions, Curr. Appl. Phys., 9, 119, 10.1016/j.cap.2008.12.047

Keblinski, 2005, Nanofluids for thermal transport, Mater. Today, 8, 36, 10.1016/S1369-7021(05)70936-6

Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 1, 10.1063/1.2093936

Chopkar, 2007, Development and characterization of Al2Cu and Ag2Al nano-particle dispersed water and ethylene glycol based nanofluid, Mater. Sci. Eng., B, 139, 141, 10.1016/j.mseb.2007.01.048

Timofeeva, 2007, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. Rev., 76, 1

Timofeeva, 2011, Nanofluids for heat transfer: an engineering approach, Nanoscale Res. Lett., 6, 1, 10.1186/1556-276X-6-182

Rathod, 2014, A review on heat transfer enhancement of nanofluids, Int. J. Eng. Res. Technol., 3, 149

Liu, 2005, Enhancement of thermal conductivity with carbon nano-tube for nanofluids, Int. Commun. Heat Mass, 32, 1202, 10.1016/j.icheatmasstransfer.2005.05.005

Glory, 2008, Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes, J. Appl. Phys., 103, 1, 10.1063/1.2908229

Walvekar, 2011, Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic, J. Exp. Nanosci., 567

Ruan, 2012, Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions, Nanoscale Res. Lett., 7, 1

Karami, 2014, A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector, Sol. Energy Mater. Sol. Cells, 121, 114, 10.1016/j.solmat.2013.11.004

Ding, 2006, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49, 240, 10.1016/j.ijheatmasstransfer.2005.07.009

Walvekar, 2015, Application of CNT nanofluids in a turbulent flow heat exchanger, J. Exp. Nanosci., 10, 1, 10.1080/17458080.2015.1015461

Yanuar, 2011, Flow and convective heat transfer characteristics of spiral pipe for nano-fluids, Int. J. Res. Rev. Appl. Sci., 7, 236

Hwang, 2007, Stability and thermal conductivity characteristics of nanofluids, Thermochim. Acta, 455, 70, 10.1016/j.tca.2006.11.036

Nasiri, 2011, Effect of dispersion method on thermal conductivity and stability of nanofluid, Exp. Therm. Fluid Sci., 35, 717, 10.1016/j.expthermflusci.2011.01.006

Haghighi, 2013, Shelf stability of nanofluids and its effect on thermal conductivity and viscosity, Meas. Sci. Technol., 24, 105301, 10.1088/0957-0233/24/10/105301

Srinivas, 2016, Nanofluids with CNTs for automotive applications, Heat Mass Transfer, 52, 701, 10.1007/s00231-015-1588-1

Wen, 2005, Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids, J. Nanopart. Res., 7, 265, 10.1007/s11051-005-3478-9

Ghadimi, 2011, A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transfer, 54, 4051, 10.1016/j.ijheatmasstransfer.2011.04.014

Pantzali, 2009, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int. J. Heat Fluid Flow, 30, 691, 10.1016/j.ijheatfluidflow.2009.02.005

Manna, 2009, Synthesis, characterization and application of nanofluid – an overview, J. Indian Inst. Sci., 89, 21

Li, 2009, A review on development of nanofluid preparation and characterization, Powder Technol., 196, 89, 10.1016/j.powtec.2009.07.025

Xie, 2011, Review on the preparation and thermal performances of carbon nanotube contained nanofluids, J. Chem. Eng. Data, 56, 1030, 10.1021/je101026j

Yu, 2012, A review on nanofluids: preparation, stability mechanisms and applications, J. Nanomater., 2012, 1

Haddad, 2014, A review on how the researchers prepare their nanofluids, Int. J. Therm. Sci., 76, 168, 10.1016/j.ijthermalsci.2013.08.010

Sidik, 2014, A review on preparation methods and challenges of nanofluids, Int. Commun. Heat Mass Transfer, 54, 115, 10.1016/j.icheatmasstransfer.2014.03.002

Singh, 2008, Thermal conductivity of nanofluids, Defence Sci. J., 58, 600, 10.14429/dsj.58.1682

Murshed, 2008, Thermophysical and electrokinetic properties of nanofluids – a critical review, Appl. Therm. Eng., 28, 2109, 10.1016/j.applthermaleng.2008.01.005

Mohammed, 2011, Convective heat transfer and fluid flow study over a step using nanofluids: a review, Renew. Sustain. Energy Rev., 15, 2921, 10.1016/j.rser.2011.02.019

Ramesh, 2011, Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment, Nanoscale Res. Lett., 6, 734, 10.1186/1556-276X-6-334

Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010

Kakac, 2009, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transfer, 52, 3187, 10.1016/j.ijheatmasstransfer.2009.02.006

Shanthi, 2012, Heat transfer enhancement using nanofluids – an overview, Therm. Sci., 16, 423, 10.2298/TSCI110201003S

Taylor, 2009, Pool boiling of nanofluids: comprehensive review of existing data and limited new data, Int. J. Heat Mass Transfer, 52, 5339, 10.1016/j.ijheatmasstransfer.2009.06.040

Thomas, 2011, A review of experimental investigations on thermal phenomena in nanofluids, Nanoscale Res. Lett., 6, 1, 10.1186/1556-276X-6-377

Kavitha, 2012, Synthesis, characterization of TiO2 nano powder and water based nanofluids using two step method, Eur. J. Appl. Eng. Sci. Res., 1, 235

Wang, 2012, Heat conduction mechanisms in nanofluids and suspensions, Nano Today, 7, 124, 10.1016/j.nantod.2012.02.007

Turkyilmazoglu, 2014, Nanofluid flow and heat transfer due to a rotating disk, Comput. Fluids, 94, 139, 10.1016/j.compfluid.2014.02.009

Pang, 2015, Review on combined heat and mass transfer characteristics in nanofluids, Int. J. Therm. Sci., 87, 49, 10.1016/j.ijthermalsci.2014.07.017

Wong, 2010, Applications of nanofluids: current and future, Adv. Mech. Eng., 2010, 1

Gupta, 2012, An overview of nanofluids: a new media towards green environment, Int. J. Environ. Sci., 3, 433

Yu, 2012, Optimizing sonication parameters for dispersion of single-walled carbon nanotubes, Chem. Phys., 408, 11, 10.1016/j.chemphys.2012.08.020

Mahian, 2013, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer, 57, 582, 10.1016/j.ijheatmasstransfer.2012.10.037

Halelfadl, 2014, Efficiency of carbon nanotubes water based nanofluids as coolants, Exp. Therm. Fluid Sci., 53, 104, 10.1016/j.expthermflusci.2013.11.010

Nagarajan, 2014, Nanofluids for solar collector applications: a review, Energy Proc., 61, 2416, 10.1016/j.egypro.2014.12.017

Saidur, 2011, A review on applications and challenges of nanofluids, Renew. Sustain. Energy Rev., 15, 1646, 10.1016/j.rser.2010.11.035

Goharshadi, 2013, Nanofluids for heat transfer enhancement – a review, Phys. Chem. Res., 1, 1

Mukherjee, 2013, Preparation and stability of nanofluids – a review, IOSR-J. Mech. Civ. Eng., 9, 63, 10.9790/1684-0926369

Zhu, 2007, Preparation and thermal conductivity of suspensions of graphite nano-particles, Carbon, 45, 226, 10.1016/j.carbon.2006.07.005

Patel, 2003, Thermal conductivity of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., 83, 2931, 10.1063/1.1602578

Putnam, 2006, Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., 99, 10.1063/1.2189933

Liu, 2007, Effect of nano-particles on pool boiling heat transfer of refrigerant 141b

Kang, 2006, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer, 19, 181, 10.1080/08916150600619281

Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3

Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218

Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, 125, 151, 10.1115/1.1532008

Zhou, 2004, Heat transfer enhancement of copper nanofluid with acoustic cavitation, Int. J. Heat Mass Transfer, 47, 3109, 10.1016/j.ijheatmasstransfer.2004.02.018

Jwo, 2005, Experimental study on thermal properties of brines containing nanoparticles, Rev. Adv. Mater. Sci., 10, 79

Jana, 2007, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochim. Acta, 462, 45, 10.1016/j.tca.2007.06.009

Xie, 2002, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91, 4568, 10.1063/1.1454184

Liu, 2006, Enhancement of thermal conductivity with CuO for nanofluids, Chem. Eng. Technol., 29, 72, 10.1002/ceat.200500184

Kedzierski, 2009, Effect of CuO nanoparticle concentration on R134a/lubricant pool-boiling heat transfer, J. Heat Transfer, 131, 043205, 10.1115/1.3072926

Vajjha, 2010, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nano-fluids, Int. J. Heat Mass Transfer, 53, 4607, 10.1016/j.ijheatmasstransfer.2010.06.032

Drzazga, 2012, Influence of nonionic surfactant on nanofluid properties

Khairul, 2014, Heat transfer performance of different nanofluids flows in a helically coiled heat exchanger, Adv. Mater. Res., 832, 160, 10.4028/www.scientific.net/AMR.832.160

Manimaran, 2014, Preparation and characterization of copper oxide nanofluid for heat transfer applications, Appl. Nanosci., 4, 163, 10.1007/s13204-012-0184-7

Dr, 2016, Kumar, Preparation and characterization of Nanofluid (CuO/Water, TiO2/Water), Int. J. Sci. Eng., 1, 14

Fard, 2011, Numerical and experimental investigation of heat transfer of ZnO/Water nanofluid in the concentric tube and plate heat exchangers, Therm. Sci., 15, 183, 10.2298/TSCI091103048H

Bhagat, 2015, Study of zinc oxide nanofluids for heat transfer application, J. Nanosci. Nanotechnol., 1, 1

Zhu, 2006, Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids, Appl. Phys. Lett., 89, 023123, 10.1063/1.2221905

Mondragon, 2012, Characterization of physical properties of nanofluids for heat transfer application, J. Phys: Conf. Ser., 395, 012017

Zawrah, 2015, Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications, Hous. Build. National Res. Centre

Ahammed, 2016, Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger, Exp. Therm. Fluid Sci., 74, 81, 10.1016/j.expthermflusci.2015.11.023

Trisaksri, 2009, Nucleate pool boiling heat transfer of TiO2-R141b nanofluids, Int. J. Heat Mass Transfer, 52, 1582, 10.1016/j.ijheatmasstransfer.2008.07.041

Vassallo, 2004, Pool boiling heat transfer experiments in silica-water nano-fluids, Int. J. Heat Mass Transfer, 47, 407, 10.1016/S0017-9310(03)00361-2

Manna, 2005, Nanofluid – a new concept in heat transfer and thermal management, Transfer Indian Inst. Met., 58, 1045

Ceylan, 2006, Enhanced solubility Ag–Cu nanoparticles and their thermal transport properties, Metall. Mater. Transfer A, 37A, 2033, 10.1007/BF02586123

Shaikh, 2007, Thermal conductivity improvement in carbon nanoparticle doped PAO oil: an experimental study, J. Appl. Phys., 101, 064302, 10.1063/1.2710337

Fontes, 2015, Experimental evaluation of thermal conductivity, viscosity and breakdown voltage AC of nanofluids of carbon nanotubes and diamond in transformer oil, Diam. Relat. Mater., 58, 115, 10.1016/j.diamond.2015.07.007

Park, 2007, Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning, Energy Build., 39, 1061, 10.1016/j.enbuild.2006.12.001

Rastogi, 2008, Comparative study of carbon nanotube dispersion using surfactants, J. Colloid Interface Sci., 328, 421, 10.1016/j.jcis.2008.09.015

Kim, 2009, Dispersity and stability measurements of functionalized multiwalled carbon nanotubes in organic solvents, Curr. Appl. Phys., 9, 100, 10.1016/j.cap.2008.12.039

Teng, 2014, Evaluating stability of aqueous multiwalled carbon nanotube nanofluids by using different stabilizers, J. Nanomater., 2014, 693459, 10.1155/2014/693459

Akoh, 1978, Magnetic properties of ferro-magnetic ultra-fine particles prepared by vacuum evaporation on running oil substrate, J. Cryst. Growth, 45, 495, 10.1016/0022-0248(78)90482-7

Eastman, 1997, Enhanced thermal conductivity through the development of nanofluids, Mater. Res. Soc. Symp. – Proc., 457, 3, 10.1557/PROC-457-3

Choi, 2001, Nanofluids for vehicle thermal management

Lo, 2005, Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS), J. Nanopart. Res., 7, 313, 10.1007/s11051-004-7770-x

Chang, 2007, An innovative nanofluid manufacturing system, J. Chin. Soc. Mech. Eng., 28, 187

Wusiman, 2013, Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS, Int. Commun. Heat Mass Transfer, 41, 28, 10.1016/j.icheatmasstransfer.2012.12.002

Huang, 2009

Hong, 2005, Nanoparticle-dispersion-dependent thermal conductivity in nanofluids, J. Korean Phys. Soc., 47, 321, 10.3938/jkps.47.321

Yu, 2009, Heat transfer to a silicon carbide/water nanofluid, Int. J. Heat Mass Transfer, 52, 3606, 10.1016/j.ijheatmasstransfer.2009.02.036

Zhu, 2009, Dispersion behaviour and thermal conductivity characteristics of Al2O3/H2O nanofluids, Curr. Appl. Phys., 9, 131, 10.1016/j.cap.2007.12.008

Yang, 2011, An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids, Int. J. Refrig, 34, 1741, 10.1016/j.ijrefrig.2011.06.007

Teng, 2013, Preparation and characterization of carbon nanofluids by using a revised water-assisted synthesis method, J. Nanomater., 2013, 1, 10.1155/2013/582304

Lee, 1999, Measuring thermal conductivity of fluids containing oxide nano-particles, J. Heat Transfer, 121, 280, 10.1115/1.2825978

Li, 2007, Evaluation on dispersion behavior of the aqueous copper nano-suspensions, J. Colloid Interface Sci., 310, 456, 10.1016/j.jcis.2007.02.067

Putra, 2003, Natural convection of nanofluids, Heat Mass Transfer, 39, 775, 10.1007/s00231-002-0382-z

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080

You, 2003, Effect of nano-particles on critical heat flux of water in pool boiling heat transfer, Appl. Phys. Lett., 83, 3374, 10.1063/1.1619206

Tu, 2004, An experimental study of nanofluid boiling heat transfer

Bang, 2005, Boiling heat transfer performance and phenomena of Al2O3-water nanofluids from a plain surface in a pool, Int. J. Heat Mass Transfer, 48, 2420, 10.1016/j.ijheatmasstransfer.2004.12.047

Li, 2006, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions nanofluid, J. Appl. Phys., 99, 084314, 10.1063/1.2191571

Zhang, 2006, Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids, Int. J. Thermophys., 27, 569, 10.1007/s10765-006-0054-1

Zhang, 2007, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nano-particles, Exp. Therm. Fluid Sci., 31, 593, 10.1016/j.expthermflusci.2006.06.009

Kim, 2007, Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation, J. Heat Transfer, 129, 298, 10.1115/1.2427071

Yoo, 2007, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochim. Acta, 455, 66, 10.1016/j.tca.2006.12.006

Assael, 2004, Thermal conductivity of suspensions of carbon nano-tubes in water, Int. J. Thermophys., 25, 971, 10.1023/B:IJOT.0000038494.22494.04

Assael, 2005, Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nano-tubes in the presence of two different dispersants, Int. J. Thermophys., 26, 647, 10.1007/s10765-005-5569-3

Garg, 2009, An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids, Int. J. Heat Mass Transfer, 52, 5090, 10.1016/j.ijheatmasstransfer.2009.04.029

Walvekar, 2012, Thermal conductivity of carbon nanotube nanofluid-experimental and theoretical study, Heat Transfer Asian Res., 41, 145, 10.1002/htj.20405

Leong, 2014, The effect of surfactant on stability and thermal conductivity of carbon nanotubes based nanofluids, Therm. Sci. OnLine-First (00), 78

Halelfadl, 2013, Viscosity of carbon nanotubes water based nanofluids: influence of concentration and temperature, Int. J. Therm. Sci., 71, 111, 10.1016/j.ijthermalsci.2013.04.013

Yu, 2007, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon, 45, 618, 10.1016/j.carbon.2006.10.010

Bandyopadhyaya, 2002, Stabilization of individual carbon nanotubes in aqueous solutions, Nano Lett., 2, 25, 10.1021/nl010065f

Islam, 2003, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 3, 269, 10.1021/nl025924u

Wu, 2009, Thermal conductivity measurement for carbon-nanotube suspensions with the 3ω method, Adv. Mater. Res., 60–61, 394, 10.4028/www.scientific.net/AMR.60-61.394

Kim, 2008, Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions, J. Phys. Chem. Solids, 69, 1209, 10.1016/j.jpcs.2007.10.062

Tang, 2010, Study of the dispersion and electrical properties of carbon nanotubes treated by surfactants in dimethylacetamide, J. Nanosci. Nanotechnol., 10, 4967, 10.1166/jnn.2010.2224

Phuoc, 2011, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, Int. J. Therm. Sci., 50, 12, 10.1016/j.ijthermalsci.2010.09.008

Shanbedi, 2015, Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants, J. Therm. Anal. Calorim., 120, 1193, 10.1007/s10973-015-4404-8

Xie, 2003, Nanofluids containing multi-walled carbon nano-tubes and their enhanced thermal conductivities, J. Appl. Phys., 94, 4967, 10.1063/1.1613374

Hwang, 2008, Production of and dispersion stability of nano-particles in nanofluids, Powder Technol., 186, 145, 10.1016/j.powtec.2007.11.020

Song, 2015, Stability of stainless-steel nanoparticle and water mixtures, Powder Technol., 272, 34, 10.1016/j.powtec.2014.11.026

Wang, 2009, Influence of pH on nanofluids’ viscosity and thermal conductivity, Chin. Phys. Lett., 26, 1

Chiesa, 2009, Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media, Colloids Surf., A, 335, 88, 10.1016/j.colsurfa.2008.10.044

Witharana, 2013, Stability of glycol nanofluids – the theory and experiment, Powder Technol., 239, 72, 10.1016/j.powtec.2013.01.039

Xia, 2014, Effects of surfactant on the stability and thermal conductivity of Al2O3/deionized water nanofluids, Int. J. Therm. Sci., 84, 118, 10.1016/j.ijthermalsci.2014.05.004

Ghadimi, 2013, The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid, Exp. Therm. Fluid Sci., 51, 1, 10.1016/j.expthermflusci.2013.06.001

Filho, 2014, Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system, Energy Convers. Manage., 84, 261, 10.1016/j.enconman.2014.04.009

Russel, 1992, Colloidal dispersions, J. Chem. Technol. Biotechnol., 54, 201

Elimelech, 1998

Lee, 2011, Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications, Int. J. Heat Mass Transfer, 54, 433, 10.1016/j.ijheatmasstransfer.2010.09.026

Ju, 2012, Aggregation kinetics of SDBS-dispersed carbon nanotubes in different aqueous suspensions, Colloids Surf., A, 409, 159, 10.1016/j.colsurfa.2012.06.015

Farahmandjou, 2009, Stability investigation of colloidal FePt nano-particle systems by spectrophotometer analysis, Chin. Phys. Lett., 26, 027501, 10.1088/0256-307X/26/2/027501

Esumi, 1996, Chemical treatment of carbon nanotubes, Carbon, 34, 279, 10.1016/0008-6223(96)83349-5

Jia, 2005, Centrifugal purification of chemically modified single-walled carbon nanotubes, Sci. Technol. Adv. Mater., 6, 571, 10.1016/j.stam.2005.08.004

Tang, 2006, Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system, Appl. Surf. Sci., 252, 5227, 10.1016/j.apsusc.2005.08.004

Yu, 2008, Nanofluids with plasma treated diamond nano-particles, Appl. Phys. Lett., 92, 103111, 10.1063/1.2894520

Joni, 2009, Dispersion stability enhancement of titania nanoparticles in organic solvent using a bead mill process, Ind. Eng. Chem. Res., 48, 6916, 10.1021/ie801812f

Hong, 2005, Study of the enhanced thermal conductivity of Fe nanofluids, J. Appl. Phys., 97, 1, 10.1063/1.1861145

Lee, 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transfer, 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026

Turgut, 2009, Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids, Int. J. Thermophys., 30, 1213, 10.1007/s10765-009-0594-2

Nadler, 2008, Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge, Carbon, 46, 1384, 10.1016/j.carbon.2008.05.024

Chen, 2011, Ultrasonic-aided fabrication of gold nanofluids, Nanoscale Res. Lett., 6, 1, 10.1186/1556-276X-6-198

Colla, 2012, Water-based Fe2O3 nanofluid characterization: thermal conductivity and viscosity measurements and correlation, Adv. Mech. Eng., 4, 674947, 10.1155/2012/674947

Sadri, 2014, An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes, Nanoscale Res. Lett., 9

Amrollahi, 2008, The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid), Nanotechnology, 19, 10.1088/0957-4484/19/31/315701

Fedele, 2011, Experimental stability analysis of different water based nanofluids, Nanoscale Res. Lett., 6, 1, 10.1186/1556-276X-6-300

Daungthongsuk, 2007, A critical review of convective heat transfer of nanofluids, Renew. Sustain. Energy Rev., 11, 797, 10.1016/j.rser.2005.06.005

UV/VIS/IR Spectroscopy Analysis of Nanoparticles, Nanocomposix. <http://50.87.149.212/sites/default/files/nanoComposix%20Guidelines%20for%20Zeta%20Potential%20Analysis%20of%20Nanoparticles.pdf> (accessed 04.05.16).

Zhu, 2010, Preparation, characterization, viscosity and thermal conductivity of CaCO3, Sci. China Technol. Sci., 53, 360, 10.1007/s11431-010-0032-5

Wei, 2009, Synthesis and thermal conductivity of CuO nanofluids, Int. J. Heat Mass Transfer, 52, 4371, 10.1016/j.ijheatmasstransfer.2009.03.073

Jiang, 2003, Production of aqueous colloidal dispersions of carbon nano-tubes, J. Colloid Interface Sci., 260, 89, 10.1016/S0021-9797(02)00176-5

Sato, 2009, Thermal performance of self-rewetting fluid heat pipe containing dilute solutions of polymer-capped silver nano-particles synthesized by microwave-polyol process

Vakili-Nezhaad, 2009, Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts, Chem. Eng. Commun., 196, 997, 10.1080/00986440902797865

Sadeghi, 2015, Investigation of alumina nanofluid stability by UV–vis spectrum, Microfluid. Nanofluid., 18, 1023, 10.1007/s10404-014-1491-y