Preparation and energy storage performance of transparent dielectric films with two-dimensional platelets
Tài liệu tham khảo
Dang, 2013, Flexible nanodielectric materials with high permittivity for power energy storage, Adv. Mater., 25, 6334, 10.1002/adma.201301752
Huan, 2016, Advanced polymeric dielectrics for high energy density applications, Prog. Mater. Sci., 83, 236, 10.1016/j.pmatsci.2016.05.001
Zhang, 2018, Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces, Adv. Mater. Interfaces, 5, 1800096, 10.1002/admi.201800096
Fan, 2018, Dielectric materials for high-temperature capacitors, IET Nanodielectrics, 1, 32, 10.1049/iet-nde.2018.0002
Zhang, 2016, Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications, J. Mater. Chem., 4, 4797, 10.1039/C5TA09949H
Shen, 2017, Polymer nanocomposites dielectrics for energy applications, 511
Li, 2016, Polymer nanocomposites for power energy storage, 139
Li, 2018, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency, Adv. Mater., 30, 1802155, 10.1002/adma.201802155
Dang, 2013, Flexible nanodielectric materials with high permittivity for power energy storage, Adv. Mater., 25, 6334, 10.1002/adma.201301752
Dang, 2012, Fundamentals, processes and applications of high-permittivity polymer–matrix composites, Prog. Mater. Sci., 57, 660, 10.1016/j.pmatsci.2011.08.001
Wang, 2011, Polymer nanocomposites for electrical energy storage, J. Polym. Sci. B Polym. Phys., 49, 1421, 10.1002/polb.22337
Jin, 2014, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc., 97, 1, 10.1111/jace.12773
Lu, 2019, Dielectric property and ac conductivity of P(VDF-CTFE)-PLZST polymer-ceramic composite films, Ceram. Int., 45, 8979, 10.1016/j.ceramint.2019.01.230
Zhang, 2016, Nano-clip based composites with a low percolation threshold and high dielectric constant, Nano Energy, 26, 550, 10.1016/j.nanoen.2016.06.022
Liao, 2017, Flexible hdC-G reinforced polyimide composites with high dielectric permittivity, Compos. Appl. Sci. Manuf., 101, 50, 10.1016/j.compositesa.2017.06.011
Zhang, 2013, Metal-polymer nanocomposites with high percolation threshold and high dielectric constant, Appl. Phys. Lett., 103, 232903, 10.1063/1.4838237
Xu, 2017, Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application, Mater. Lett., 192, 25, 10.1016/j.matlet.2017.01.064
Zhou, 2017, Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity, Mater. Lett., 200, 97, 10.1016/j.matlet.2017.04.115
Dang, 2016, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications, Small, 12, 1688, 10.1002/smll.201503193
Zhang, 2018, Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects, Sci. China Mater., 61, 303, 10.1007/s40843-017-9206-4
Zhang, 2018, All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler, Compos. Sci. Technol., 167, 285, 10.1016/j.compscitech.2018.08.017
Duan, 2018, Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid, J. Mater. Sci., 53, 15096, 10.1007/s10853-018-2700-y
Zhang, 2011, Development of polymer-based 0-3 composites with high dielectric constant, J. Adv. Dielectr., 1, 389, 10.1142/S2010135X11000574
Luo, 2019, Interface design for high energy density polymer nanocomposites, Chem. Soc. Rev., 10.1039/C9CS00043G
Zhu, 2012, Novel ferroelectric polymers for high energy density and low loss dielectrics, Macromolecules, 45, 2937, 10.1021/ma2024057
Wang, 2018, Design, synthesis and processing of PVDF-based dielectric polymers, IET Nanodielectrics, 2, 80, 10.1049/iet-nde.2018.0003
Xia, 2018, PVDF-based dielectric polymers and their applications in electronic materials, IET Nanodielectrics, 1, 17, 10.1049/iet-nde.2018.0001
Zhang, 2016, Process and microstructure to achieve ultra-high dielectric constant in ceramic-polymer composites, Sci. Rep., 6, 35763, 10.1038/srep35763
Bai, 2000, High-dielectric-constant ceramic-powder polymer composites, Appl. Phys. Lett., 76, 3804, 10.1063/1.126787
Yang, 2019, Perovskite lead-free dielectrics for energy storage applications, Prog. Mater. Sci., 102, 72, 10.1016/j.pmatsci.2018.12.005
Zhang, 2012, Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites, Appl. Phys. A, 107, 597, 10.1007/s00339-012-6836-3
Dang, 2009, Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity, Adv. Mater., 21, 2077, 10.1002/adma.200803427
Tang, 2015, Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites, Nano Energy, 17, 302, 10.1016/j.nanoen.2015.09.002
Luo, 2017, Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites, Energy Environ. Sci., 10, 137, 10.1039/C6EE03190K
Hao, 2017, Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films, Nano Energy, 31, 49, 10.1016/j.nanoen.2016.11.008
Niu, 2015, Effect of the modifier structure on the performance of barium titanate/poly(vinylidene fluoride) nanocomposites for energy storage applications, ACS Appl. Mater. Interfaces, 7, 24168, 10.1021/acsami.5b07486
Zhang, 2014, Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers, Nanoscale, 6, 6701, 10.1039/C4NR00703D
Lu, 2019, Fabrication and characterization of free-standing, flexible and translucent BaTiO3-P(VDF-CTFE) nanocomposite films, J. Alloy. Comp., 770, 327, 10.1016/j.jallcom.2018.08.185
Xie, 2017, Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires, J. Mater. Chem., 5, 6070, 10.1039/C7TA00513J
Tang, 2014, Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites, ACS Appl. Mater. Interfaces, 6, 5450, 10.1021/am405038r
Xie, 2016, Largely enhanced ferroelectric and energy storage performances of P(VDF-CTFE) nanocomposites at a lower electric field using BaTiO3 nanowires by stirring hydrothermal method, Ceram. Int., 42, 19012, 10.1016/j.ceramint.2016.09.057
Tang, 2013, Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors, Adv. Energy Mater., 3, 451, 10.1002/aenm.201200808
Luo, 2017, Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers, J. Mater. Chem., 5, 7091, 10.1039/C7TA00136C
Pan, 2017, Ultrafast discharge and high-energy-density of polymer nanocomposites achieved via optimizing the structure design of barium titanates, ACS Sustain. Chem. Eng., 5, 4707, 10.1021/acssuschemeng.7b00080
Pan, 2017, Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes, Compos. Sci. Technol., 147, 30, 10.1016/j.compscitech.2017.05.004
Zhang, 2018, High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array, Adv. Sci., 5, 1700512, 10.1002/advs.201700512
Chen, 2018, High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates, J. Mater. Chem. C, 6, 271, 10.1039/C7TC04758D
Li, 2015, Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets, Energy Environ. Sci., 8, 922, 10.1039/C4EE02962C
Yang, 2016, Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets, Appl. Phys. Lett., 109, 10.1063/1.4961390
Lu, 2018, Optimizing ply pattern and composition of layered composites based on cyanate ester, carbon nanotube, and boron nitride: toward ultralow dielectric loss and high energy storage, J. Phys. Chem. C, 122, 5238, 10.1021/acs.jpcc.7b12117
Li, 2014, High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites, Adv. Mater., 26, 6244, 10.1002/adma.201402106
Wang, 2018, Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets, Compos. Appl. Sci. Manuf., 108, 62, 10.1016/j.compositesa.2018.02.020
Tomer, 2011, Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage, J. Appl. Phys., 109, 10.1063/1.3569696
Wen, 2017, Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania, Adv. Mater. Interfaces, 5, 1701088, 10.1002/admi.201701088
Zhu, 2018, Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density, J. Phys. Chem. C, 122, 18282, 10.1021/acs.jpcc.8b04918
Jiang, 2016, Significantly enhanced energy storage density of sandwich-structured (Na0.5Bi0.5)0.93Ba0.07TiO3/P(VDF-HFP) composites induced by PVP-modified two-dimensional platelets, J. Mater. Chem., 4, 18050, 10.1039/C6TA06682H
Lv, 2018, BaTiO3 platelets and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) hybrid composites for energy storage application, Mech. Syst. Signal Process., 108, 48, 10.1016/j.ymssp.2018.02.011
Luo, 2018, Enhanced performance of P(VDF-HFP) composites using two-dimensional BaTiO3 platelets and graphene hybrids, Compos. Sci. Technol., 160, 237, 10.1016/j.compscitech.2018.03.034
Wang, 2018, Enhanced dielectric tunability and energy storage properties of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites through texture arrangement, Compos. Sci. Technol., 158, 112, 10.1016/j.compscitech.2018.02.015
Pan, 2017, NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites, Nano Energy, 40, 587, 10.1016/j.nanoen.2017.09.004
Pan, 2018, Interfacial coupling effect in organic/inorganic nanocomposites with high energy density, Adv. Mater., 30, 1705662, 10.1002/adma.201705662
Wang, 2018, Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization, Nano Energy, 44, 364, 10.1016/j.nanoen.2017.12.018
Bai, 2012, Processing optimization and piezoelectric properties of textured Ba(Zr,Ti)O3 ceramics, J. Alloy. Comp., 536, 189, 10.1016/j.jallcom.2012.04.097
Shen, 2016, Enhanced breakdown strength and suppressed leakage current of polyvinylidene fluoride nanocomposites by two-dimensional ZrO2 nanosheets, Mater. Express, 6, 277, 10.1166/mex.2016.1309
Han, 2012, Effect of crystal structure on polarization reversal and energy storage of ferroelectric poly(vinylidene fluoride-co-chlorotrifluoroethylene) thin films, Polymer, 53, 1277, 10.1016/j.polymer.2012.02.004
Lu, 2019, BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density, Compos. B Eng., 168, 34, 10.1016/j.compositesb.2018.12.059
Lu, 2001, Low-temperature preparation and size effect of strontium barium niobate ultrafine powder, J. Am. Ceram. Soc., 84, 79, 10.1111/j.1151-2916.2001.tb00611.x
Zhang, 2005, Novel silica tube/polyimide composite films with variable low dielectric constant, Adv. Mater., 17, 1056, 10.1002/adma.200401330
Jiang, 2019, Chapter 8 - polymer-based nanocomposites with high dielectric permittivity, 201
Chu, 2008, Enhancement of dielectric energy density in the poly(vinylidene fluoride)-based terpolymer/copolymer blends, Appl. Phys. Lett., 93, 152903, 10.1063/1.3002277
Xie, 2017, Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3, ACS Appl. Mater. Interfaces, 9, 2995, 10.1021/acsami.6b14166
Weibull, 1951, A statistical distribution function of wide applicability, J. Appl. Mech., 2, 385
Yu, 2013, Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications, J. Appl. Phys., 113, 10.1063/1.4776740
Siddabattuni, 2011, Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control, Mater. Sci. Eng., B, 176, 1422, 10.1016/j.mseb.2011.07.025
Yao, 2017, Dielectric constant and energy density of poly(vinylidene fluoride) nanocomposites filled with core-shell structured BaTiO3@Al2O3 nanoparticles, Ceram. Int., 43, 3127, 10.1016/j.ceramint.2016.11.128
Yu, 2013, Poly(vinylidene fluoride) polymer based nanocomposites with significantly reduced energy loss by filling with core-shell structured BaTiO3/SiO2 nanoparticles, Appl. Phys. Lett., 102, 102903, 10.1063/1.4795017
Li, 2008, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles, Chem. Mater., 20, 6304, 10.1021/cm8021648
Chi, 2017, Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanofibers, J. Mater. Chem., 5, 16757, 10.1039/C7TA03897F
Liu, 2017, Enhanced discharged energy density and efficiency of poly(vinylidene fluoride) nanocomposites through a small loading of core-shell structured BaTiO3@Al2O3 nanofibers, Ceram. Int., 43, 585, 10.1016/j.ceramint.2016.09.198
Wang, 2017, Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites, ACS Appl. Mater. Interfaces, 9, 7547, 10.1021/acsami.6b14454