Preparation and energy storage performance of transparent dielectric films with two-dimensional platelets

Composites Science and Technology - Tập 182 - Trang 107759 - 2019
Fei Wen1,2, Hanyu Lou1, Jianfei Ye1, Wangfeng Bai1, Luwen Wang1, Lili Li1, Wei Wu1, Zhuo Xu1,3, Gaofeng Wang1, Zhicheng Zhang4, Lin Zhang3
1Key Lab of RF Circuits and Systems of the Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
2Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, NSW, 2500, Australia
3Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi'an 710049, China
4Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, PR China

Tài liệu tham khảo

Dang, 2013, Flexible nanodielectric materials with high permittivity for power energy storage, Adv. Mater., 25, 6334, 10.1002/adma.201301752 Huan, 2016, Advanced polymeric dielectrics for high energy density applications, Prog. Mater. Sci., 83, 236, 10.1016/j.pmatsci.2016.05.001 Zhang, 2018, Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces, Adv. Mater. Interfaces, 5, 1800096, 10.1002/admi.201800096 Fan, 2018, Dielectric materials for high-temperature capacitors, IET Nanodielectrics, 1, 32, 10.1049/iet-nde.2018.0002 Zhang, 2016, Controlled functionalization of poly(4-methyl-1-pentene) films for high energy storage applications, J. Mater. Chem., 4, 4797, 10.1039/C5TA09949H Shen, 2017, Polymer nanocomposites dielectrics for energy applications, 511 Li, 2016, Polymer nanocomposites for power energy storage, 139 Li, 2018, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency, Adv. Mater., 30, 1802155, 10.1002/adma.201802155 Dang, 2013, Flexible nanodielectric materials with high permittivity for power energy storage, Adv. Mater., 25, 6334, 10.1002/adma.201301752 Dang, 2012, Fundamentals, processes and applications of high-permittivity polymer–matrix composites, Prog. Mater. Sci., 57, 660, 10.1016/j.pmatsci.2011.08.001 Wang, 2011, Polymer nanocomposites for electrical energy storage, J. Polym. Sci. B Polym. Phys., 49, 1421, 10.1002/polb.22337 Jin, 2014, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures, J. Am. Ceram. Soc., 97, 1, 10.1111/jace.12773 Lu, 2019, Dielectric property and ac conductivity of P(VDF-CTFE)-PLZST polymer-ceramic composite films, Ceram. Int., 45, 8979, 10.1016/j.ceramint.2019.01.230 Zhang, 2016, Nano-clip based composites with a low percolation threshold and high dielectric constant, Nano Energy, 26, 550, 10.1016/j.nanoen.2016.06.022 Liao, 2017, Flexible hdC-G reinforced polyimide composites with high dielectric permittivity, Compos. Appl. Sci. Manuf., 101, 50, 10.1016/j.compositesa.2017.06.011 Zhang, 2013, Metal-polymer nanocomposites with high percolation threshold and high dielectric constant, Appl. Phys. Lett., 103, 232903, 10.1063/1.4838237 Xu, 2017, Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application, Mater. Lett., 192, 25, 10.1016/j.matlet.2017.01.064 Zhou, 2017, Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity, Mater. Lett., 200, 97, 10.1016/j.matlet.2017.04.115 Dang, 2016, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications, Small, 12, 1688, 10.1002/smll.201503193 Zhang, 2018, Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects, Sci. China Mater., 61, 303, 10.1007/s40843-017-9206-4 Zhang, 2018, All-organic dielectric nanocomposites using conducting polypyrrole nanoclips as filler, Compos. Sci. Technol., 167, 285, 10.1016/j.compscitech.2018.08.017 Duan, 2018, Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid, J. Mater. Sci., 53, 15096, 10.1007/s10853-018-2700-y Zhang, 2011, Development of polymer-based 0-3 composites with high dielectric constant, J. Adv. Dielectr., 1, 389, 10.1142/S2010135X11000574 Luo, 2019, Interface design for high energy density polymer nanocomposites, Chem. Soc. Rev., 10.1039/C9CS00043G Zhu, 2012, Novel ferroelectric polymers for high energy density and low loss dielectrics, Macromolecules, 45, 2937, 10.1021/ma2024057 Wang, 2018, Design, synthesis and processing of PVDF-based dielectric polymers, IET Nanodielectrics, 2, 80, 10.1049/iet-nde.2018.0003 Xia, 2018, PVDF-based dielectric polymers and their applications in electronic materials, IET Nanodielectrics, 1, 17, 10.1049/iet-nde.2018.0001 Zhang, 2016, Process and microstructure to achieve ultra-high dielectric constant in ceramic-polymer composites, Sci. Rep., 6, 35763, 10.1038/srep35763 Bai, 2000, High-dielectric-constant ceramic-powder polymer composites, Appl. Phys. Lett., 76, 3804, 10.1063/1.126787 Yang, 2019, Perovskite lead-free dielectrics for energy storage applications, Prog. Mater. Sci., 102, 72, 10.1016/j.pmatsci.2018.12.005 Zhang, 2012, Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites, Appl. Phys. A, 107, 597, 10.1007/s00339-012-6836-3 Dang, 2009, Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity, Adv. Mater., 21, 2077, 10.1002/adma.200803427 Tang, 2015, Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites, Nano Energy, 17, 302, 10.1016/j.nanoen.2015.09.002 Luo, 2017, Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites, Energy Environ. Sci., 10, 137, 10.1039/C6EE03190K Hao, 2017, Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films, Nano Energy, 31, 49, 10.1016/j.nanoen.2016.11.008 Niu, 2015, Effect of the modifier structure on the performance of barium titanate/poly(vinylidene fluoride) nanocomposites for energy storage applications, ACS Appl. Mater. Interfaces, 7, 24168, 10.1021/acsami.5b07486 Zhang, 2014, Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers, Nanoscale, 6, 6701, 10.1039/C4NR00703D Lu, 2019, Fabrication and characterization of free-standing, flexible and translucent BaTiO3-P(VDF-CTFE) nanocomposite films, J. Alloy. Comp., 770, 327, 10.1016/j.jallcom.2018.08.185 Xie, 2017, Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires, J. Mater. Chem., 5, 6070, 10.1039/C7TA00513J Tang, 2014, Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites, ACS Appl. Mater. Interfaces, 6, 5450, 10.1021/am405038r Xie, 2016, Largely enhanced ferroelectric and energy storage performances of P(VDF-CTFE) nanocomposites at a lower electric field using BaTiO3 nanowires by stirring hydrothermal method, Ceram. Int., 42, 19012, 10.1016/j.ceramint.2016.09.057 Tang, 2013, Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors, Adv. Energy Mater., 3, 451, 10.1002/aenm.201200808 Luo, 2017, Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers, J. Mater. Chem., 5, 7091, 10.1039/C7TA00136C Pan, 2017, Ultrafast discharge and high-energy-density of polymer nanocomposites achieved via optimizing the structure design of barium titanates, ACS Sustain. Chem. Eng., 5, 4707, 10.1021/acssuschemeng.7b00080 Pan, 2017, Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes, Compos. Sci. Technol., 147, 30, 10.1016/j.compscitech.2017.05.004 Zhang, 2018, High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array, Adv. Sci., 5, 1700512, 10.1002/advs.201700512 Chen, 2018, High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates, J. Mater. Chem. C, 6, 271, 10.1039/C7TC04758D Li, 2015, Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets, Energy Environ. Sci., 8, 922, 10.1039/C4EE02962C Yang, 2016, Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets, Appl. Phys. Lett., 109, 10.1063/1.4961390 Lu, 2018, Optimizing ply pattern and composition of layered composites based on cyanate ester, carbon nanotube, and boron nitride: toward ultralow dielectric loss and high energy storage, J. Phys. Chem. C, 122, 5238, 10.1021/acs.jpcc.7b12117 Li, 2014, High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites, Adv. Mater., 26, 6244, 10.1002/adma.201402106 Wang, 2018, Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets, Compos. Appl. Sci. Manuf., 108, 62, 10.1016/j.compositesa.2018.02.020 Tomer, 2011, Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage, J. Appl. Phys., 109, 10.1063/1.3569696 Wen, 2017, Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania, Adv. Mater. Interfaces, 5, 1701088, 10.1002/admi.201701088 Zhu, 2018, Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density, J. Phys. Chem. C, 122, 18282, 10.1021/acs.jpcc.8b04918 Jiang, 2016, Significantly enhanced energy storage density of sandwich-structured (Na0.5Bi0.5)0.93Ba0.07TiO3/P(VDF-HFP) composites induced by PVP-modified two-dimensional platelets, J. Mater. Chem., 4, 18050, 10.1039/C6TA06682H Lv, 2018, BaTiO3 platelets and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) hybrid composites for energy storage application, Mech. Syst. Signal Process., 108, 48, 10.1016/j.ymssp.2018.02.011 Luo, 2018, Enhanced performance of P(VDF-HFP) composites using two-dimensional BaTiO3 platelets and graphene hybrids, Compos. Sci. Technol., 160, 237, 10.1016/j.compscitech.2018.03.034 Wang, 2018, Enhanced dielectric tunability and energy storage properties of plate-like Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites through texture arrangement, Compos. Sci. Technol., 158, 112, 10.1016/j.compscitech.2018.02.015 Pan, 2017, NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites, Nano Energy, 40, 587, 10.1016/j.nanoen.2017.09.004 Pan, 2018, Interfacial coupling effect in organic/inorganic nanocomposites with high energy density, Adv. Mater., 30, 1705662, 10.1002/adma.201705662 Wang, 2018, Ultrahigh energy density and greatly enhanced discharged efficiency of sandwich-structured polymer nanocomposites with optimized spatial organization, Nano Energy, 44, 364, 10.1016/j.nanoen.2017.12.018 Bai, 2012, Processing optimization and piezoelectric properties of textured Ba(Zr,Ti)O3 ceramics, J. Alloy. Comp., 536, 189, 10.1016/j.jallcom.2012.04.097 Shen, 2016, Enhanced breakdown strength and suppressed leakage current of polyvinylidene fluoride nanocomposites by two-dimensional ZrO2 nanosheets, Mater. Express, 6, 277, 10.1166/mex.2016.1309 Han, 2012, Effect of crystal structure on polarization reversal and energy storage of ferroelectric poly(vinylidene fluoride-co-chlorotrifluoroethylene) thin films, Polymer, 53, 1277, 10.1016/j.polymer.2012.02.004 Lu, 2019, BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density, Compos. B Eng., 168, 34, 10.1016/j.compositesb.2018.12.059 Lu, 2001, Low-temperature preparation and size effect of strontium barium niobate ultrafine powder, J. Am. Ceram. Soc., 84, 79, 10.1111/j.1151-2916.2001.tb00611.x Zhang, 2005, Novel silica tube/polyimide composite films with variable low dielectric constant, Adv. Mater., 17, 1056, 10.1002/adma.200401330 Jiang, 2019, Chapter 8 - polymer-based nanocomposites with high dielectric permittivity, 201 Chu, 2008, Enhancement of dielectric energy density in the poly(vinylidene fluoride)-based terpolymer/copolymer blends, Appl. Phys. Lett., 93, 152903, 10.1063/1.3002277 Xie, 2017, Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3, ACS Appl. Mater. Interfaces, 9, 2995, 10.1021/acsami.6b14166 Weibull, 1951, A statistical distribution function of wide applicability, J. Appl. Mech., 2, 385 Yu, 2013, Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications, J. Appl. Phys., 113, 10.1063/1.4776740 Siddabattuni, 2011, Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control, Mater. Sci. Eng., B, 176, 1422, 10.1016/j.mseb.2011.07.025 Yao, 2017, Dielectric constant and energy density of poly(vinylidene fluoride) nanocomposites filled with core-shell structured BaTiO3@Al2O3 nanoparticles, Ceram. Int., 43, 3127, 10.1016/j.ceramint.2016.11.128 Yu, 2013, Poly(vinylidene fluoride) polymer based nanocomposites with significantly reduced energy loss by filling with core-shell structured BaTiO3/SiO2 nanoparticles, Appl. Phys. Lett., 102, 102903, 10.1063/1.4795017 Li, 2008, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles, Chem. Mater., 20, 6304, 10.1021/cm8021648 Chi, 2017, Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanofibers, J. Mater. Chem., 5, 16757, 10.1039/C7TA03897F Liu, 2017, Enhanced discharged energy density and efficiency of poly(vinylidene fluoride) nanocomposites through a small loading of core-shell structured BaTiO3@Al2O3 nanofibers, Ceram. Int., 43, 585, 10.1016/j.ceramint.2016.09.198 Wang, 2017, Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites, ACS Appl. Mater. Interfaces, 9, 7547, 10.1021/acsami.6b14454