Chuẩn bị và tính chất điện môi của màng cellulose cyanoethyl xốp

Springer Science and Business Media LLC - Tập 26 - Trang 1261-1275 - 2018
Bei Wang1,2, Hongliang Kang1, Hougui Yang1,2, Jianjun Xie2, Ruigang Liu1
1State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
2School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China

Tóm tắt

Cellulose cyanoethyl (CEC) có độ thay thế nhóm cyanoethyl cao đã được tổng hợp bằng phản ứng cộng Michael. Màng CEC xốp đã được chế tạo thành công bằng phương pháp phân tách pha do không hóa lỏng. Các tham số ảnh hưởng đến hình thái và tính chất của các màng CEC đã được nghiên cứu và thảo luận. Màng không đối xứng với độ xốp cao hơn đã được thu được khi sử dụng nước làm bể đông kết. Ngược lại, màng CEC đối xứng dày đặc với lỗ rỗng dạng tế bào hoặc phẳng đã được thu được khi sử dụng ethanol hoặc DMF/H2O làm bể đông kết. Độ xốp của các màng CEC giảm khi nồng độ polymer trong dung dịch CEC/DMF tăng lên. Hơn nữa, hình thái của màng CEC còn phụ thuộc vào trọng lượng phân tử của CEC. Trong trường hợp sử dụng nước làm bể đông kết, hình thái của màng CEC đã thay đổi từ cấu trúc không đối xứng với lớp da mỏng dày sang cấu trúc đối xứng như sợi quấn. Khi ethanol hoặc DMF/H2O được sử dụng làm bể đông kết, hình thái của các màng CEC đối xứng thu được đã thay đổi từ lỗ rỗng dạng tế bào hoặc phẳng thành cấu trúc quấn như sợi. Hằng số điện môi của các màng CEC tăng lên khi độ xốp của các màng CEC giảm.

Từ khóa


Tài liệu tham khảo

Abed MRM, Kumbharkar SC, Groth AM, Li K (2012) Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique. J Membr Sci 407:145–154 Ahmad AL, Ramli WKW (2013) Hydrophobic PVDF membrane via two-stage soft coagulation bath system for membrane gas absorption of CO2. Sep Purif Technol 103:230–240 Bottino A, Cameraroda G, Capannelli G, Munari S (1991) The formation of microporous polyvinylidene difluoride membranes by phase-separation. J Membr Sci 57:1–20 Buonomenna MG, Macchi P, Davoli M, Drioli E (2007) Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. Eur Polym J 43:1557–1572 Cao C et al (2014) Wool graft polyacrylamidoxime as the adsorbent for both cationic and anionic toxic ions from aqueous solutions. RSC Adv 4:60609–60616 Cao C, Kang HL, Li PP, Zhang C, Li WW, Huang Y, Liu RG (2016) Adsorption of fluorinion on polyacrylamidoxime decorated wool and the mechanism. Acta Polym Sin. https://doi.org/10.11777/j.issn1000.3304.2016.15246 Chakrabarty B, Ghoshal AK, Purkait MK (2008) Effect of molecular weight of PEG on membrane morphology and transport properties. J Membr Sci 309:209–221 Chang HH, Chang LK, Yang CD, Lin DJ, Cheng LP (2017) Effect of solvent on the dipole rotation of poly(vinylidene fluoride) during porous membrane formation by precipitation in alcohol baths. Polymer 115:164–175 Chen JJ, Kong XQ, Sumida K, Manumpil MA, Long JR, Reimer JA (2013) Ex situ NMR relaxometry of metal-organic frameworks for rapid surface-area screening. Angew Chem Int Ed 52:12043–12046 Chen ZL, Rana D, Matsuura T, Yang YF, Lan CQ (2014) Study on the structure and vacuum membrane distillation performance of PVDF composite membranes: I. Influence of blending. Sep Purif Technol 133:303–312 Chen MY, Kang HL, Gong YM, Guo J, Zhang H, Liu RG (2015a) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726 Chen ZL, Rana D, Matsuura T, Meng D, Lan CQ (2015b) Study on structure and vacuum membrane distillation performance of PVDF membranes: II. Influence of molecular weight. Chem Eng J 276:174–184 Chun KY, Jang SH, Kim HS, Kim YW, Han HS, Joe YI (2000) Effects of solvent on the pore formation in asymmetric 6FDA-4,4′ ODA polyimide membrane: terms of thermodynamics, precipitation kinetics, and physical factors. J Membr Sci 169:197–214 Dang ZM, Xu HP, Wang HY (2007) Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl Phys Lett 90:3804 Eykens L, De Sitter K, Stoops L, Dotremont C, Pinoy L, Van der Bruggen B (2017) Development of polyethersulfone phase-inversion membranes for membrane distillation using oleophobic coatings. J Appl Polym Sci 134:45516 Fadhil S et al (2016) Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chem Eng Process 102:16–26 Guillen GR, Pan YJ, Li MH, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50:3798–3817 Jia C, Shao ZQ, Fan HY, Wang JQ (2015) Preparation and dielectric properties of cyanoethyl cellulose/BaTiO3 flexible nanocomposite films. RSC Adv 5:15283–15291 Jia C et al (2016) Barium titanate as a filler for improving the dielectric property of cyanoethyl cellulose/antimony tin oxide nanocomposite films. Compos A Appl Sci Manuf 86:1–8 Jin RG, Hua YQ (2013) Polymer physics, 4th edn. Chemical Industry Publisher, Beijing (in Chinese) Kamel S, Hassan EM, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper(II) ions. J Appl Polym Sci 100:329–334 Kang HL, Liu RG, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16 Kang HL, Liu RG, Huang Y (2016) Cellulose-based gels. Macromol Chem Phys 217:1322–1334 Kuo CY, Lin HN, Tsai HA, Wang DM, Lai JY (2008) Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 233:40–47 Levitt MH (2007) Spin dynamics: basics of nuclear magnetic resonance, 2nd edn. Wiley, Chichester Li WW, Liu RG, Kang HL, Sun YM, Dong FY, Huang Y (2013) Synthesis of amidoxime functionalized cellulose derivatives as a reducing agent and stabilizer for preparing gold nanoparticles. Polym Chem 4:2556–2563 Lin DJ, Chang HH, Chen TC, Lee YC, Cheng LP (2006) Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. Eur Polym J 42:1581–1594 Matsui H, Shiraishi N (2000) Dielectric properties of cyanoethyl cellulose grafted with fluorine-containing acrylates. Mokuzai Gakkaishi 46:468–474 Matsuura T (1994) Synthetic membranes and membrane separation processes. CRC Press, Boca Raton Mitchell J, Gladden LF, Chandrasekera TC, Fordham EJ (2014) Low-field permanent magnets for industrial process and quality control. Prog Nucl Magn Reson Spectrosc 76:1–60 Morooka T, Norimoto M, Yamada T (1986) Cyanoethylated cellulose prepared by homogeneous reaction in paraformaldehyde-DMSO system. J Appl Polym Sci 32:3575–3587 Mosqueda-Jimenez DB, Narbaitz RM, Matsuura T, Chowdhury G, Pleizier G, Santerre JP (2004) Influence of processing conditions on the properties of ultrafiltration membranes. J Membr Sci 231:209–224 Nakayama E, Azuma JI (1998) Substituent distribution of cyanoethyl cellulose. Cellulose 5:175–185 Pu WH, He XM, Wang L, Jiang CY, Wan CR (2006) Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion. J Membr Sci 272:11–14 Rahimpour A, Madaeni SS, Mansourpanah Y (2007) High performance polyethersulfone UF membrane for manufacturing spiral wound module: preparation, morphology, performance, and chemical cleaning. Polym Adv Technol 18:403–410 Saad GR (1994) Dielectric behavior of cyanoethylated cellulose. Polym Int 34:411–415 Saha AK, Mitra BC (1996) Studies on cyanoethylation of jute fiber. J Appl Polym Sci 62:733–742 Song ZY, Xing MH, Zhang J, Li BA, Wang SC (2012) Determination of phase diagram of a ternary PVDF/γ-BL/DOP system in TIPS process and its application in preparing hollow fiber membranes for membrane distillation. Sep Purif Technol 90:221–230 Takahashi Y, Kitahama A, Furukawa T (2004) Dielectric properties of the surface layer in ultra-thin films of a VDF/TrFE copolymer. IEEE Trans Dielectr Electr Insul 11:227–231 Takechi S, Teramoto Y, Nishio Y (2016) Improvement of dielectric properties of cyanoethyl cellulose via esterification and film stretching. Cellulose 23:765–777 Tan DQ, Cao Y, Irwin PC, Cunningham D (2010) High-temperature capacitors and methods of making the same. USA patent application 20100244585 Wang XY, Zhang L, Sun DH, An QF, Chen HL (2009) Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method. Desalination 236:170–178 Xu PM, Guo GJ, Liu XL, Wei JZ, Wu ZS (1994) Study on the relation between the thickness and the dielectric and pyroelectric coefficients of PVDF/TGS composite material film by experiment. Ferroelectrics 157:411–414 Xu HP, Dang ZM, Bing NC, Wu YH, Yang DD (2010) Temperature dependence of electric and dielectric behaviors of Ni/polyvinylidene fluoride composites. J Appl Phys 107:034105 Yen SPS, Lewis CR, Cygan PJ, Jow RT (1996) Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors. US patent 5490035 Yeow ML, Liu YT, Li K (2004) Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. J Appl Polym Sci 92:1782–1789 Young TH, Cheng LP, Lin DJ, Fane L, Chuang WY (1999) Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer 40:5315–5323 Zhang L, Cheng ZY (2011) Development of polymer-based 0–3 composites with high dielectric constant. J Adv Dielectr 1:389–406 Zhang C et al (2016) Hierarchical porous structures in cellulose: NMR relaxometry approach. Polymer 98:237–243 Zhou C, Hou ZC, Lu XF, Liu ZY, Bian XK, Shi LQ, Li LA (2010) Effect of polyethersulfone molecular weight on structure and performance of ultrafiltration membranes. Ind Eng Chem Res 49:9988–9997