Preparation and characterization of thermally conductive thermoplastic polyurethane/h‐BN nanocomposites

Polymer Composites - Tập 35 Số 3 - Trang 530-538 - 2014
Emrah Çakmakçı1, Çiler Koçyiğit2, Selma Çakır1, Ali Durmuş2, Memet Vezi̇r Kahraman1
1Department of Chemistry, Marmara University, 34722, Istanbul, Turkey
2Department of Chemical Engineering, Faculty of Engineering, Istanbul University, 34320 Avcılar, Istanbul, Turkey

Tóm tắt

Polyurethane nanocomposites are versatile engineering polymers with unique properties. In this study, nano hexagonal boron nitride containing thermoplastic polyurethane elastomers were prepared via melt blending and hot‐pressing techniques. The nanocomposites were characterized using Fourier transform infrared, differential scanning calorimetry, thermal gravimetric analysis, tensile tests, and thermal conductivity measurements. The surface morphology of the TPU/h‐BN composites was characterized by scanning electron microscopy. The optical properties of the composites were determined by UV transmittance measurements and as the amount of h‐BN increased, optical transparencies decreased dramatically. Nanocomposites displayed higher E‐modulus values and lower elongation at break values than the pure TPU elastomer. Char yields of TPUs increased with increasing h‐BN percentage. Moreover, thermal conductivity of the composite materials improved with the incorporation of h‐BN. POLYM. COMPOS., 35:530–538, 2014. © 2013 Society of Plastics Engineers

Từ khóa


Tài liệu tham khảo

10.1557/JMR.1993.1174

10.1002/pola.1993.080310714

10.1177/0021998306067321

10.1016/j.polymer.2008.04.017

10.1002/polb.21319

10.1163/156855509X448253

A.Olad “Advances in Diverse Industrial Applications of Nanocomposites ” Boreddy Reddy Ed. InTech Croatia 113 (2011).

10.1007/BF02867106

10.1016/j.eurpolymj.2009.06.003

10.1016/j.eurpolymj.2012.11.008

10.1016/j.mechmat.2004.08.001

10.1002/marc.200350008

10.1016/j.polymdegradstab.2012.07.011

10.1021/cr00099a004

10.1155/2010/163561

10.1021/cm0102741

10.1016/j.jssc.2003.08.026

10.1016/j.jeurceramsoc.2011.09.002

Rudolph S., 1993, Interceram., 42, 302

Paine R.T., 2002, Polymer Nanocomposites: Synthesis, Characterization and Modeling

Lin Y., 2010, J. Phys. Chem., 114, 17434

10.1016/0955-2219(89)90003-4

Madakbaş S., 2013, Thermochim. Acta, 1, 552

10.1515/htmp‐2013‐0003

10.1016/j.ceramint.2011.02.011

10.5370/JICEE.2012.2.1.090

10.1002/pat.1992

10.1016/j.polymer.2011.12.040

10.1016/j.pnsc.2013.03.004

10.1007/978-1-4419-8825-6_34

10.1021/la00030a011

10.1021/jp106330c

10.1002/adfm.200801435

10.1016/j.compscitech.2010.05.012

Bayer.http://www.bayermaterialsciencenafta.com/products/. Accessed on 10 June 2013.

10.1002/app.24734

10.1016/j.msec.2008.08.035

10.1021/la204429z

10.1016/j.apsusc.2013.01.086

10.1016/j.tca.2011.05.010

10.1016/j.tca.2009.10.013

Jiang F., 2008, Polym. Polym. Compos., 16, 471

10.1155/2010/583234

10.1109/MEI.2011.5954064

10.1002/pc.20925

Yoon Y.‐S., 2012, J. Chem. Chem. Eng., 6, 515

10.1021/jp3026545

Bayer.http://tpe‐u.com/tpu/emea/en/products/Thermische_Eigenschaften.html. Accessed on 10 June 2013.