Preparation and characterization of polypropylene composites reinforced by functional ZnO/lignin hybrid materials

Polymer Testing - Tập 79 - Trang 106058 - 2019
Łukasz Klapiszewski1, Aleksandra Grząbka-Zasadzińska1, Sławomir Borysiak1, Teofil Jesionowski1
1Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland

Tài liệu tham khảo

Isikgor, 2015, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem., 6, 4497, 10.1039/C5PY00263J Hatakeyama, 2010, Lignin structure, properties, and application, Adv. Polym. Sci., 232, 1 Pucciariello, 2004, Physical properties of straw lignin - based polymer blends, Polymer, 45, 4159, 10.1016/j.polymer.2004.03.098 Chen, 2011, Physical properties of lignin-based polypropylene blends, Polym. Compos., 32, 1019, 10.1002/pc.21087 Bozsódi, 2016, Modification of interactions in polypropylene/lignosulfonate blends, Mater. Design, 103, 32, 10.1016/j.matdes.2016.04.061 Chen, 2016, Sheet-like lignin particles as multifunctional fillers in polypropylene, ACS Sustain. Chem. Eng., 4, 4997, 10.1021/acssuschemeng.6b01369 Samal, 2014, Bio-based polyethylene–lignin composites containing a pro-oxidant/pro-degradant additive: preparation and characterization, J. Polym. Environ., 22, 58, 10.1007/s10924-013-0620-0 Kadla, 2004, Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends, Compos. A, 35, 395, 10.1016/j.compositesa.2003.09.019 Faruk, 2008, Reinforcement of rigid PVC/wood‐flour composites with multi‐walled carbon nanotubes, J. Vinyl Additive Technol., 14, 60, 10.1002/vnl.20145 Szabó, 2017, Competitive interactions in aromatic polymer/lignosulfonate blends, ACS Sustain. Chem. Eng., 5, 410, 10.1021/acssuschemeng.6b01785 Li, 2019, Poly(lactic acid)/lignin blends prepared with the Pickering emulsion template method, Eur. Polym. J., 110, 378, 10.1016/j.eurpolymj.2018.12.001 Csikós, 2015, Modification of interfacial adhesion with a functionalized polymer in PLA/wood composites, Eur. Polym. J., 68, 592, 10.1016/j.eurpolymj.2015.03.032 Bula, 2015, A novel functional silica/lignin hybrid material as a potential bio-based polypropylene filler, Polym. Compos., 36, 913, 10.1002/pc.23011 Borysiak, 2016, Nucleation ability of advanced functional silica/lignin hybrid fillers in polypropylene composites, J. Therm. Anal. Calorim., 126, 251, 10.1007/s10973-016-5390-1 Klapiszewski, 2015, Preparation and characterization of novel PVC/silica-lignin composites, Polymers, 7, 1767, 10.3390/polym7091482 Grząbka-Zasadzińska, 2016, Supermolecular structure and nucleation ability of polylactide-based composites with silica/lignin hybrid fillers, J. Therm. Anal. Calorim., 126, 263, 10.1007/s10973-016-5311-3 Grząbka-Zasadzińska, 2018, Thermal and mechanical properties of silica–lignin/polylactide composites subjected to biodegradation, Materials, 11, 1, 10.3390/ma11112257 Klapiszewski, 2017, Preparation and characterization of eco-friendly Mg(OH)2/lignin hybrid material and its use as a functional filler for poly(vinyl chloride), Polymers, 9, 258, 10.3390/polym9070258 Maldhure, 2015, Effect of modifications of lignin on thermal, structural, and mechanical properties of polypropylene/modified lignin blends, J. Thermoplastic Compos. Mater., 30, 625, 10.1177/0892705715610402 Chen, 2016, Sheet-like lignin particles as multifunctional fillers in polypropylene, ACS Sustain. Chem. Eng., 6, 4997, 10.1021/acssuschemeng.6b01369 Zaborski, 2001, The effect of zinc oxide on the properties of ethylene-propylene rubbers, Polimery, 46, 678, 10.14314/polimery.2001.678 Przybyszewska, 2009, The effect of zinc oxide nanoparticle morphology on activity in crosslinking of carboxylated nitrile elastomer, Express Polym. Lett., 3, 542, 10.3144/expresspolymlett.2009.68 Kołodziejczak-Radzimska, 2014, Zinc oxide – from synthesis to application: a review, Materials, 7, 2833, 10.3390/ma7042833 Li, 2015, Ultraviolet resistance and antimicrobial properties of ZnO in the polypropylene materials: a review, J. Mater. Sci. Technol., 31, 331, 10.1016/j.jmst.2014.11.022 Zhao, 2006, A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites, Polymer, 47, 3207, 10.1016/j.polymer.2006.02.089 Esthappan, 2015, Effect of crystallite size of zinc oxide on the mechanical, thermal and flow properties of polypropylene/zinc oxide nanocomposites, Compos. B, 69, 145, 10.1016/j.compositesb.2013.08.010 Wei, 2017, Preparation of ZnO-loaded lignin-based carbon fiber for the electrocatalytic oxidation of hydroquinone, Catalysts, 7, 1, 10.3390/catal7060180 Wang, 2017, One-pot in-situ preparation of a lignin-based carbon/ZnO nanocomposite with excellent photocatalytic performance, Mater. Chem. Phys., 199, 193, 10.1016/j.matchemphys.2017.07.009 Wang, 2017, Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity, Appl. Surf. Sci., 426, 206, 10.1016/j.apsusc.2017.07.112 Wang, 2017, A novel lignin/ZnO hybrid nanocomposite with excellent UV-absorption ability and its application in transparent polyurethane coating, Ind. Eng. Chem. Res., 56, 11133, 10.1021/acs.iecr.7b02425 Patki, 2018, Crystallization kinetics of polymers, 625 Siwińska-Stefańska, 2018, TiO2-ZnO binary oxide systems: comprehensive characterization and tests of photocatalytic activity, Materials, 11, 1, 10.3390/ma11050841 Siwińska-Stefańska, 2019, Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systems with desired antibacterial and photocatalytic properties, Appl. Surf. Sci., 463, 791, 10.1016/j.apsusc.2018.08.256 Yogamalar, 2011, Tuning the aspect ratio of hydrothermally grown ZnO by choice of precursor, J. Solid State Chem., 184, 12, 10.1016/j.jssc.2010.10.024 Klapiszewski, 2019, A high-density polyethylene container based on ZnO/lignin dual fillers with potential antimicrobial activity, Polym. Testing, 73, 51, 10.1016/j.polymertesting.2018.11.018 Wysokowski, 2013, An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites, J. Mater. Chem. B, 1, 6469, 10.1039/c3tb21186j Muthukumaran, 2012, Structural, optical and photoluminescence studies of heavily Mn-doped ZnO nanoparticles annealed under Ar atmosphere, J. Mater. Sci. Mater. Electron., 34, 1946 Marikkannan, 2016, Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides, Mater. Chem. Phys., 184, 172, 10.1016/j.matchemphys.2016.09.039 Shokry Hassan, 2014, Formulation of synthesized zinc oxide nanopowder into hybrid beads for dye separation, J. Nanomater., 967492, 1, 10.1155/2014/967492 Klapiszewski, 2013, Physicochemical and electrokinetic properties of silica/lignin biocomposites, Carbohydr. Polym., 94, 345, 10.1016/j.carbpol.2013.01.058 Klapiszewski, 2013, Preparation and characterization of multifunctional chitin/lignin material, J. Nanomater., 1, 10.1155/2013/425726 Klapiszewski, 2015, Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal, Chem. Eng. J., 260, 684, 10.1016/j.cej.2014.09.054 Klapiszewski, 2017, Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II), Chem. Eng. J., 314, 169, 10.1016/j.cej.2016.12.114 Varga, 2002, β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application, J. Macromol. Sci. B, 41, 1121, 10.1081/MB-120013089 Borysiak, 2013, Fundamental studies on lignocellulose/polypropylene composites: effects of wood treatment on the transcrystalline morphology and mechanical properties, J. Appl. Polym. Sci., 127, 1309, 10.1002/app.37651 Felix, 1994, Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites, J. Mater. Sci., 29, 3043, 10.1007/BF01117618 Cheng, 2019, Effect of particles size on dielectric properties of nano-ZnO/LDPE composites, Materials, 12, 1 Dobrzyńska-Mizera, 2015, Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin, 1695, 10.1063/1.4937327 Borysiak, 2008, Mechanical properties of lignocellulosic/polypropylene composites, Mol. Cryst. Liq. Cryst., 484, 10.1080/15421400801901464 Mirjalili, 2014, Mechanical and morphological properties of polypropylene/nano α-Al2O3 composites, Sci. World J., 718765, 1, 10.1155/2014/718765 Dörrstein, 2018, Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites, Compos. Struct., 189, 349, 10.1016/j.compstruct.2017.12.003 Ouyang, 2012, Poly(Lactic Acid) blended with cellulolytic enzyme lignin: mechanical and thermal properties and morphology evaluation, J. Polym. Environ., 20, 1, 10.1007/s10924-011-0359-4 Toriz, 2002, Lignin‐polypropylene composites. Part 1: composites from unmodified lignin and polypropylene, Polym. Compos., 23, 806, 10.1002/pc.10478 Tharayil, 2019, Dynamic mechanical properties of zinc oxide reinforced linear low density polyethylene composites, Mater. Res. Express, 6, 10.1088/2053-1591/aaff8b Li, 2010, Mechanical and antibacterial properties of modified nano‐ZnO/high‐density polyethylene composite films with a low doped content of nano‐ZnO, J. Appl. Polym. Sci., 116, 2965 Borysiak, 2015, Crystallization of different polypropylene matrices in the presence of wood fillers, Polym. Compos., 36, 813, 10.1002/pc.23088 Wunderlich, 1976