Preparation and characterization of nitrogen-doped TiO 2 /diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boxall, 2012, Pharmaceuticals and personal care products in the environment: what are the big questions?, Environ. Health Perspect., 120, 1221, 10.1289/ehp.1104477
Khetan, 2007, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry, Chem. Rev., 107, 2319, 10.1021/cr020441w
Liu, 2013, Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China, Environ. Int., 59, 208, 10.1016/j.envint.2013.06.012
Wang, 2015, Adsorption behavior of antibiotic in soil environment: a critical review, Front. Environ. Sci. Eng., 9, 565, 10.1007/s11783-015-0801-2
Daghrir, 2013, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11, 209, 10.1007/s10311-013-0404-8
Liu, 2013, Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions, Ecol. Eng., 53, 138, 10.1016/j.ecoleng.2012.12.033
Ji, 2011, Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption, Environ. Sci. Technol., 45, 5580, 10.1021/es200483b
Pastor-Navarro, 2009, Review on immunoanalytical determination of tetracycline and sulfonamide residues in edible products, Anal. Bioanal. Chem., 395, 907, 10.1007/s00216-009-2901-y
Wu, 2013, Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite, Appl. Clay Sci., 74, 66, 10.1016/j.clay.2012.09.026
Xu, 2009, Transport and adsorption of antibiotics by marine sediments in a dynamic environment, J. Soils Sediments, 9, 364, 10.1007/s11368-009-0091-z
Homem, 2011, Degradation and removal methods of antibiotics from aqueous matrices – A review, J. Environ. Manage., 92, 2304, 10.1016/j.jenvman.2011.05.023
Choi, 2008, Removal of antibiotics by coagulation and granular activated carbon filtration, J. Hazard. Mater., 151, 38, 10.1016/j.jhazmat.2007.05.059
Chin, 2007, Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor, Chem. Eng. J., 130, 53, 10.1016/j.cej.2006.11.008
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Kumar, 2011, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A, 115, 13211, 10.1021/jp204364a
Pelaez, 2012, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B-Environ., 125, 331, 10.1016/j.apcatb.2012.05.036
Chen, 2015, Structure design and photocatalytic properties of one-dimensional SnO2–TiO2 composites, Nanoscale Res. Lett., 10, 200, 10.1186/s11671-015-0901-8
Schneider, 2014, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114, 9919, 10.1021/cr5001892
Xiong, 2012, Nitrogen-doped titanate-anatase core-shell nanobelts with exposed 101 anatase facets and enhanced visible light photocatalytic activity, J. Am. Chem. Soc., 134, 5754, 10.1021/ja300730c
Lin, 2013, Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst, Sep. Purif. Technol., 116, 114, 10.1016/j.seppur.2013.05.018
Hyeok, 2007, Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation, Environ. Sci. Technol., 41, 7530, 10.1021/es0709122
Ohno, 2004, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Water Sci. Technol., 265, 115
Qi, 2010, Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance, Environ. Sci. Technol., 44, 3493, 10.1021/es903928n
Zaleska, 2008, Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light, Appl. Catal. B, 78, 92, 10.1016/j.apcatb.2007.09.005
Senthilnathan, 2010, Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2, Chem. Eng. J., 161, 83, 10.1016/j.cej.2010.04.034
Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Ihara, 2001, Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment, J. Mater. Sci., 36, 4201, 10.1023/A:1017929207882
Lee, 2013, Efficient visible-light induced photocatalysis on nanoporous nitrogen-doped titanium dioxide catalysts, Chem. Eng. J., 228, 756, 10.1016/j.cej.2013.05.059
Vaiano, 2015, Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts, Chem. Eng. J., 261, 3, 10.1016/j.cej.2014.02.071
Shan, 2010, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review, Appl. Catal. A-Gen., 389, 1, 10.1016/j.apcata.2010.08.053
Gao, 2014, Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2, J. Hazard. Mater., 279, 96, 10.1016/j.jhazmat.2014.06.061
Gao, 2012, Combustion synthesis of graphene oxide-TiO2 hybrid materials for photodegradation of methyl orange, Carbon, 50, 4093, 10.1016/j.carbon.2012.04.057
Yap, 2012, Bimodal N-doped P25-TiO2/AC composite: preparation, characterization, physical stability, and synergistic adsorptive-solar photocatalytic removal of sulfamethazine, Appl. Catal. A, 427–428, 125, 10.1016/j.apcata.2012.03.042
Di, 2015, Biomimetic CNT@TiO2 composite with enhanced photocatalytic properties, Chem. Eng. J., 281, 60, 10.1016/j.cej.2015.06.067
Morales-Torres, 2012, Design of graphene-based TiO2 photocatalysts—a review, Environ. Sci. Pollut. Res., 19, 3676, 10.1007/s11356-012-0939-4
Putri, 2015, Heteroatom doped graphene in photocatalysis: a review, Appl. Surf. Sci., 358, 2, 10.1016/j.apsusc.2015.08.177
Wang, 2014, Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation, Powder Technol., 262, 1, 10.1016/j.powtec.2014.04.050
Kibanova, 2012, Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite, J. Hazard. Mater., 211–212, 233, 10.1016/j.jhazmat.2011.12.008
Hosseini, 2007, Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol, Appl. Catal. B, 74, 53, 10.1016/j.apcatb.2006.12.015
Liu, 2014, TiO2-coated natural zeolite: Rapid humic acid adsorption and effective photocatalytic regeneration, Chem. Eng. Sci., 105, 46, 10.1016/j.ces.2013.10.041
Li, 2008, Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral, J. Hazard. Mater., 152, 1037, 10.1016/j.jhazmat.2007.07.114
Rossetto, 2010, Bentonites impregnated with TiO2 for photodegradation of methylene blue, Appl. Clay Sci., 48, 602, 10.1016/j.clay.2010.03.010
Yang, 2012, Facile synthesis and photocatalytic properties of AgAgClTiO2/rectorite composite, J. Colloid Interface Sci., 376, 217, 10.1016/j.jcis.2012.03.003
Chong, 2009, Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst, Microporous Mesoporous Mater., 117, 233, 10.1016/j.micromeso.2008.06.039
Sun, 2014, Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts, Appl. Surf. Sci., 314, 251, 10.1016/j.apsusc.2014.06.171
Akhtar, 2009, Hierarchically porous ceramics from diatomite powders by pulsed current processing, J. Am. Ceram. Soc., 92, 338, 10.1111/j.1551-2916.2008.02882.x
Li, 2009, Large-area fibrous network of polyaniline formed on the surface of diatomite, Appl. Surf. Sci., 255, 8276, 10.1016/j.apsusc.2009.05.101
Rafatullah, 2010, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177, 70, 10.1016/j.jhazmat.2009.12.047
Khraisheh, 2004, Remediation of wastewater containing heavy metals using raw and modified diatomite, Chem. Eng. J., 99, 177, 10.1016/j.cej.2003.11.029
Yuan, 2004, The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study, Appl. Surf. Sci., 227, 30, 10.1016/j.apsusc.2003.10.031
Sun, 2014, Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI), Appl. Surf. Sci., 311, 369, 10.1016/j.apsusc.2014.05.070
Yu, 2014, Preparation and performance research of Ce-TiO2/KL ball photocatalysts, J. Rare Earths, 32, 849, 10.1016/S1002-0721(14)60152-6
Wang, 2016, Hard-templating of chiral TiO2 nanofibres with electron transition-based optical activity, Sci. Technol. Adv. Mater., 16, 054206, 10.1088/1468-6996/16/5/054206
Wang, 2005, Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources, Appl. Catal. B, 57, 223, 10.1016/j.apcatb.2004.11.008
Liao, 2013, Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: a batch and fixed-bed column study, Chem. Eng. J., 228, 496, 10.1016/j.cej.2013.04.118
Zhu, 2015, Mesoporous biphasic C and N codoped anatase nanocrystal-carbon composites and their derived doped anatase nanoparticles in phenol elimination under visible light, ChemCatChem, 7, 2945, 10.1002/cctc.201500341
Cheng, 2008, Effect of urea on the photoactivity of titania powder prepared by sol–gel method, Mater. Chem. Phys., 107, 77, 10.1016/j.matchemphys.2007.06.051
Asahi, 2014, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects, Chem. Rev., 114, 9824, 10.1021/cr5000738
Mitoraj, 2008, The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light, Angew. Chem. Int. Ed. Engl., 47, 9975, 10.1002/anie.200800304
Park, 2001, Removal of odor emitted from composting facilities using a porous ceramic biofilter, Water Sci. Technol., 44, 301, 10.2166/wst.2001.0561
Yap, 2010, Synthesis and characterization of nitrogen-doped TiO2/AC composite for the adsorption–photocatalytic degradation of aqueous bisphenol-A using solar light, Catal. Today, 151, 8, 10.1016/j.cattod.2010.01.012
Yu, 2010, Characterization, activity and kinetics of a visible light driven photocatalyst: cerium and nitrogen co-doped TiO2 nanoparticles, Chem. Eng. J., 157, 86, 10.1016/j.cej.2009.10.051
Rajkumar, 2011, Oxygen deficiency and room temperature ferromagnetism in undoped and cobalt-doped TiO2 nanoparticles, IEEE Trans. Nanotechnol., 10, 513, 10.1109/TNANO.2010.2049745
Xu, 2008, The preparation, characterization, and photocatalytic activities of Ce-TiO2/SiO2, J. Mol. Catal. A: Chem., 279, 77, 10.1016/j.molcata.2007.09.016
Lin, 2002, Surface characteristics of hydrous silica-coated TiO2 particles, Powder Technol., 123, 194, 10.1016/S0032-5910(01)00470-3
Li, 2006, Different effects of cerium ions doping on properties of anatase and rutile TiO2, Appl. Surf. Sci., 253, 2481, 10.1016/j.apsusc.2006.05.002
López, 2000, Effect of sulfation methods on TiO2–SiO2 sol–gel catalyst acidity, Appl. Catal. A, 197, 107, 10.1016/S0926-860X(99)00541-4
Xia, 2014, Interface actions between TiO2 and porous diatomite on the structure and photocatalytic activity of TiO2-diatomite, Appl. Surf. Sci., 303, 290, 10.1016/j.apsusc.2014.02.169
Wang, 2015, Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts, J. Hazard. Mater., 285, 212, 10.1016/j.jhazmat.2014.11.031
Wang, 2015, Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles, J. Colloid Interface Sci., 438, 204, 10.1016/j.jcis.2014.09.064
Jia, 2008, Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials, J. Colloid Interface Sci., 323, 326, 10.1016/j.jcis.2008.04.020
Senthilnathan, 2011, Photodegradation of methyl parathion and dichlorvos from drinking water with N-doped TiO2 under solar radiation, Chem. Eng. J., 172, 678, 10.1016/j.cej.2011.06.035
Liu, 2012, Flocculation of kaolin and kanto loam by methylated soy protein, Sep. Purif. Technol., 93, 1, 10.1016/j.seppur.2012.03.035
Xiong, 2008, Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent, Water Res., 42, 4869, 10.1016/j.watres.2008.09.030
Chang, 2012, Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite, Appl. Clay Sci., 67–68, 158, 10.1016/j.clay.2011.11.004
Luo, 2010, PH-dependent electrochemical behavior of proteins with different isoelectric points on the nanostructured TiO2 surface, J. Electroanal. Chem., 642, 109, 10.1016/j.jelechem.2010.02.021
Gole, 2004, Highly efficient formation of TiO2-xNx-based photocatalysts – Potential applications for active sites in microreactors, sensors, and photovoltaics, 311
Sopyan, 1996, An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation, J. Photochem. Photobiol. A-Chem., 98, 79, 10.1016/1010-6030(96)04328-6
Alijani, 2014, Synthesis of N–TiO2–P25 coated on ceramic foam by modified sol–gel method for Acid Red 73 degradation under visible-light irradiation, Res. Chem. Intermed., 41, 4489, 10.1007/s11164-014-1546-4
Duarte, 1999, Importance of tautomers in the chemical behavior of tetracyclines, J. Pharm. Sci., 88, 111, 10.1021/js980181r
Jin, 2007, Ca2+ and Mg2+ bind tetracycline with distinct stoichiometries and linked deprotonation, Biophys. Chem., 128, 185, 10.1016/j.bpc.2007.04.005
Chao, 2014, Commercial Diatomite for Adsorption of Tetracycline Antibiotic from Aqueous Solution, Sep. Sci. Technol., 49, 2221, 10.1080/01496395.2014.914954
Sharma, 2006, Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: pore transport mechanisms and energetics of permeation, J. Colloid Interface Sci., 298, 327, 10.1016/j.jcis.2005.12.033
Dai, 2009, Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension, Environ. Sci. Technol., 43, 1540, 10.1021/es802724q
Dai, 2008, Photocatalytic degradation and mineralization of commercial methamidophos in aqueous Titania suspension, Environ. Sci. Technol., 42, 1505, 10.1021/es702268p
Jiao, 2008, Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria, Chemosphere, 73, 377, 10.1016/j.chemosphere.2008.05.042
Wang, 2011, Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor, J. Hazard. Mater., 192, 35
Di Paola, 2004, Photolytic and TiO2-assisted photodegradation of aqueous solutions of tetracycline, Fresenius Environ. Bull., 13, 1275
Barolo, 2012, Mechanism of the photoactivity under visible light of N-doped titanium dioxide. Charge carriers migration in irradiated N-TiO2 investigated by electron paramagnetic resonance, J. Phys. Chem. C, 116, 20887, 10.1021/jp306123d
Ikeda, 2003, Quantitative analysis of defective sites in titanium (IV) oxide photocatalyst powders, Phys. Chem. Chem. Phys., 5, 778, 10.1039/b206594k
Lin, 2012, Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite, J. Phys. Chem. C, 116, 5764, 10.1021/jp211222w
Kominami, 2009, Photocatalytic reduction of nitrobenzene to aniline in an aqueous suspension of titanium (IV) oxide particles in the presence of oxalic acid as a hole scavenger and promotive effect of dioxygen in the system, Chem. Lett., 38, 410, 10.1246/cl.2009.410
Palominos, 2008, Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine, J. Photochem. Photobiol., A, 193, 139, 10.1016/j.jphotochem.2007.06.017
Zhang, 2010, Effective photocatalytic disinfection of E. coli K-12 using AgBr−Ag−Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals, Environ. Sci. Technol., 44, 1392, 10.1021/es903087w