Preparation and characterization of ZrB2-SiC ultra-high temperature ceramics by microwave sintering

Frontiers of Materials Science in China - Tập 4 Số 3 - Trang 276-280 - 2010
Hailong Wang1, Chang‐An Wang2, Deliang Chen1, Hong-Ling Xu1, Hongxia Lu1, Rui Zhang1, Feng Li1
1School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2The State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Upadhya K, Yang J M, Hoffmann W P. Materials for ultrahigh temperature structural applications. American Ceramic Society Bulletin, 1997, 76(12): 51–56

Fahrenholtz W G, Hilmas G E. NSF-AFOSR joint workshop on future ultra-high temperature materials. In: Nation Science Foundation. NSF-AFOSR Draft Workshop Report, January 13, 2004

Hu P, Wang G L, Wang Z. Oxidation mechanism and resistance of ZrB2-SiC composites. Corrosion Science, 2009, 51(11): 2724–2732

Lingappa R, Canchi D, Vikram J. Fabrication and mechanisms of densification of ZrB2-based ultra high temperature ceramics by reactive hot pressing. Journal of the European Ceramic Society, 2010, 30(1): 129–138

Chamberlain A L, Fahrenholtz W G, Hilmas G E. Oxidation of ZrB2-SiC ceramics under atmospheric and reentry conditions. Refractories Applications Transactions, 2005, 1(2): 1–8

Monteverde F, Bellosi A. Oxidation of ZrB2-based ceramics in dry air. Journal of the Electrochemical Society, 2003, 150(11): B552–B559

Monteverde F, Guicciardi S, Bellosi A. Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Materials Science and Engineering A, 2003, 346(1–2): 310–319

Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Refractory borides of zirconium and hafnium. Journal of the American Ceramic Society, 2007, 90(5): 1347–1364

Bellosi A, Monteverde F, Sciti D. Fast densification of ultra-high temperature ceramics by spark plasma sintering. International Journal of Applied Ceramic Technology, 2006, 3(1): 32–40

Wang H L, Wang C A, Yao X F, et al. Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society, 2007, 90(7): 1992–1997

Zhang X H, Qu Q, Han J C, et al. Microstructural features and mechanical properties of ZrB2-SiC-ZrC composites fabricated by hot pressing and reactive hot pressing. Scripta Materialia, 2008, 59(7): 753–756

Wu W W, Zhang G J, Kan Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC composites. Journal of the American Ceramic Society, 2008, 91(8): 2501–2508

Zhang S C, Hilmas G E, Fahrenholtz W G. Pressureless densification of zirconium diboride with boron carbide additions. Journal of the American Ceramic Society, 2006, 89(5): 1544–1550

Sciti D, Guicciardi S, Bellosi A, et al. Properties of a pressurelesssintered ZrB2-MoSi2 ceramic composite. Journal of the American Ceramic Society, 2006, 89(7): 2320–2322

Guo S Q. Densification of ZrB2-based composites and their mechanical and physical properties: A review. Journal of the European Ceramic Society, 2009, 29(6): 995–1011

Ford J D, Pei D C T. High temperature chemical processing via microwave absorption. Journal of Microwave Power, 1967, 2(2): 61–64

Roy R, Agrawal D, Cheng J, et al. Full sintering of powdered-metal bodies in a microwave field. Nature, 1999, 399(6737): 668–670

Xie Z P, Huang Y, Wu S. Microwave sintering of zirconia toughened alumina ceramics. Journal of the Chinese Ceramic Society, 1995, 23(1): 7–13 (in Chinese)

Fang Y, Cheng J P, Agrawald K. Effect of powder reactivity on microwave sintering of alumina. Materials Letters, 2004, 58(3–4): 498–501

Zhu S, Fahrenholtz W G, Hilmas G E, et al. Microwave sintering of a ZrB2-B4C particlulate ceramic composite. Composites: Part A, 2008, 39(3): 449–453

Gogotsi G A. Fracture toughness of ceramics and ceramic composites. Ceramics International, 2003, 29(7): 777–784