Preparation and characterization of SnO2 nanoparticles by hydrothermal route
Tóm tắt
This paper demonstrates the synthesis of SnO2 nanoparticles using a simple hydrothermal route in the presence of the surfactant hydrazine at 100 °C for 12 h. X-ray diffraction (XRD), field emission scanning electron microscopy, and transmission electron microscopy (TEM) were employed to characterize the as-prepared product, and optical property was studied by UV-visible diffuse reflectance spectroscopy (DRS). The XRD pattern of the as-prepared sample is indexed to the tetragonal structure of SnO2, and the calculated particle size is 22.4 nm, which is further confirmed by TEM. The selected area electron diffraction patterns showed continuous ring patterns without any additional diffraction spots and rings of secondary phases, revealing their crystalline structure. Analysis of the DRS spectrum showed the bandgap of the synthesized SnO2 to be 3.6 eV. The anionic surfactant hydrazine plays a key role in the formation of the SnO2 nanostructures. A probable reaction for the formation of SnO2 nanoparticles is proposed.
Tài liệu tham khảo
Ying Z, Wan Q, Song ZT, Feng SL: SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology 2004, 15: 1682. 10.1088/0957-4484/15/11/053
Chopra KL, Major S, Pandya DK: Transparent conductors–a status review. Thin Solid Films 1983, 102: 1. 10.1016/0040-6090(83)90256-0
Peng Z, Shi Z, Liu M: Mesoporous Sn–TiO2 composite electrodes for lithium batteries. Chem. Commun. 2000, 21: 25.
Aoki A, Sasakura H: Tin oxide thin film transistors. Japan J. Appl. Phys. 1970, 9: 582. 10.1143/JJAP.9.582
Paraguay-Delgado F, Antúnez-Flores W, Miki-Yoshida M, Aguilar-Elguezabal A, Santiago P, Diaz R, Ascencio JA: Structural analysis and growing mechanisms for long SnO2 nanorods synthesized by spray pyrolysis. Nanotechnology 2005, 16: 688. 10.1088/0957-4484/16/6/011
Cheng B, Russell JM, Shi W, Zhang L, Samulski ET: Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J. Am. Chem. Soc. 2004, 126: 5972. 10.1021/ja0493244
Du F, Guo Z, Li G: Hydrothermal synthesis of SnO2 hollow microspheres. Mater. Lett. 2005, 59: 2563. 10.1016/j.matlet.2005.03.046
Fujihara S, Maeda T, Ohgi H, Hosono E, Imai H, Kim S: Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability. Langmuir 2004, 20: 6476. 10.1021/la0493060
Duan J, Yang S, Liu H, Gong J, Huang H, Zhao X, Zhang R, Du Y: Single crystal SnO2 zigzag nanobelts. J. Am. Chem. Soc. 2005, 127: 6180. 10.1021/ja042748d
Liu Y, Koep E, Liu M: A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem Mater 2005, 17: 3997. 10.1021/cm050451o
Dai ZR, Gole JL, Stout JD, Wang ZL: Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 2002, 106: 1274. 10.1021/jp013214r
Hu JQ, Ma XL, Shang NG, Xie ZY, Wong NB, Lee CS, Lee ST: Large scale rapid oxidation synthesis of SnO2 nanoribbons. J. Phys. Chem. B 2002, 106: 3823.
Pourfayaz F, Khodadadi A, Mortazavi Y, Mohajerzadeh SS: SnO2 sensor selective to ethanol in presence of CO, LPG and CH4. Sensors Actuators B 2005, 108: 172. 10.1016/j.snb.2004.12.107
Davar F, Salavati-Niasaria M, Fereshteh Z: Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. J. Alloys Compd. 2010,496(1–2):638–643.
Salavati-Niasari M, Davar F, Seyghalkar H, Esmaeili E, Mir N: Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. Cryst. Eng. Comm. 2011, 13: 2948.
Gnanam S, Rajendran V: Anionic, cationic and nonionic surfactants-assisted hydrothermal synthesis of tin oxide nanoparticles and their photoluminescence properties. Digest Journal of Nanomaterials and Biostructures 2010,5(2):623.
Zhu H, Yang D, Yu G, Zhang H, Yao K: Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties. Nanotechnology 2006, 17: 2386. 10.1088/0957-4484/17/9/052
Cullity BD: Elements of X-ray Diffraction. Boston, Addison-Wesley Publishing Co; 1956.
Jain GH, Patil LA, Wagh MS, Patil DR, Patil SA, Amalnerkar DP: Surface modified BaTiO3 thick film resistors as H2S gas sensors. Sensors Actuators B Chemical 2006, 117: 159. 10.1016/j.snb.2005.11.031
Escobedo Morales A, Sanchez Mora E, Pal U: Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mexic. De Fisica S 2007, 53: 18.
Senthilkumar V, Vickraman P, Ravikumar R: Synthesis fluorine doped tin oxide nanoparticles by sol–gel technique and characterization. Journal of Sol–gel Science and Technology 2010,53(2):316. 10.1007/s10971-009-2094-z
Caglar M, Ilican S, Caglar Y, Yakuphanoglu F: The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method. Int. J. Mater. Sci. Elect. Res. 2010, 1: 21.
Caglar M, Ilican S, Caglar Y, Yakuphanoglu F: Electrical conductivity and optical properties of ZnO nanostructured thin film. Appl. Surf. Sci. 2009, 255: 4491. 10.1016/j.apsusc.2008.11.055
Liu X-C, Shi E-W, Chen Z-Z, Zhang H-W, Song L-X, Wang H, Yao S-D: Structural, optical and magnetic properties of co-doped ZnO films. J. Cryst. Growth 2006, 296: 135. 10.1016/j.jcrysgro.2006.08.034
Silva RF, Darbello Zaniquelli ME: Aluminium doped zinc oxide films: formation process and optical properties. J. Non-Cryst. Solids 1999, 247: 248. 10.1016/S0022-3093(99)00079-4
Patil GE, Kajale DD, Ahire PT, Chavan DN, Pawar NK, Shinde SD, Gaikwad VB, Jain GH: Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Bull. Mater. Sci. 2011, 120: 1.
Patil GE, Kajale DD, Gaikwad VB, Jain GH: Nanocrystalline tin oxide thin film as a low level H2S gas sensor. Int. J. Nanosci. 2011, 10: 1. 10.1142/S0219581X11007466