Preparation and characterization of Mg alloy rods with gradient microstructure by torsion deformation
Tóm tắt
Extruded AZ31 Mg alloy rods were subject to free-end torsion deformation at room temperature. The microstructure features of the torsion deformed samples were characterized using electron backscatter diffraction technique. Mg rods with gradient microstructure can be fabricated by torsion deformation. Inhomogeneous distribution of microstructure along the radial direction of the twisted rods is attributed to the linearly increasing strain accumulation and strain rate from core to surface. With increasing equivalent strain, both the amount of {10-12} twins and dislocation density increase and the c-axes of texture tend to rotate towards torsion axis. Although both dislocation slips and {10-12} twinning can be activated during torsion, dislocation slips are considered as the dominated deformation mechanism and responsible for the change of macro-texture for present torsion deformation. {10-12} twins and dislocations in the twisted samples can generate refinement hardening and dislocation hardening, respectively, to increase the hardness value.
Tài liệu tham khảo
Z. H. Chen, Wrought Magnesium Alloys, Chenmical Industry Press, Beijing (2005).
B. C. Suh, M. S. Shim, K. S. Shin, and N. Kim, Scr. Mater. 84-85, 1 (2014).
Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).
R. O. Ritchie, Nature Mater. 10, 817 (2011).
K. Lu, Science 345, 1455 (2014).
K. Lu, Acta Metal. Sin. 51, 1 (2015).
Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, and H. Gao, Nature Commun. 5, 1 (2014).
N. Guo, B. Song, H. Yu, R. Xin, B. Wang, and T. Liu, Mater. Des. 90, 545 (2016).
B. Song, N. Guo, R. Xin, H. Pan, and C. Guo. Mater. Sci. Eng. A 650, 300 (2016).
N. Guo, B. Song, C. Guo, R. Xin, and Q. Liu, Mater. Des. 83, 270 (2015).
B. Song, N. Guo, T. Liu, and Q. Yang, Mater. Des. 62, 352 (2014).
B. Beausir, L. S. Toth, F. Qods, and K. W. Neale, J. Eng. Mater. Technol. 131, 1 (2009).
X. Guo, W. Wu, P. Wu, H. Qiao, K. An, and P. K. Liaw, Scr. Mater. 69, 319 (2013).
S. Biswas, B. Beausir, L. S. Toth, and S. Suwas, Acta Mater. 61, 5263 (2013).
N. Guo, B. Luan, and Q. Liu, Mater. Des. 50, 285 (2013).
M. Tucker, M. Horstemeyer, P. Gullett, H. Elkadiri, and W. Whittington, Scr. Mater. 60, 182 (2009).
B. Wang, R. Xin, G. Huang, and Q. Liu, Scr. Mater. 66, 239 (2012).
P. Klimanek and A. Pötzsch, Mater. Sci. Eng. A 324, 145 (2002).
C. S. Roberts, Magnesium and Its Alloys, John Wiley, New York (1960).
J. Wang, D. Zhang, Y. Li, Z. Xiao, J. Fouse, and X. Yang, Mater. Des. 86, 526 (2015).
M. Wang, R. Xin, B. Wang and Q. Liu, Mater. Sci. Eng. A 528, 2941 (2011).
S. R. Agnew and Ö. Duygulu, Int. J. Plasticity 21, 1161 (2005).
S. H. Park, S.-G. Hong, and C. S. Lee, Mater. Sci. Eng. A 578, 271 (2013).
B. Song, R. Xin, X. Zheng, G. Chen, and Q. Liu, Mater. Sci. Eng. A 621, 100 (2015).
H. Zhang, G. Huang, L. Wang, and J. Li, Scr. Mater. 67, 495 (2012).
B. Song, R. Xin, G. Chen, X. Zhang, and Q. Liu, Scr. Mater. 66, 1061 (2012).
Y. Xin, M. Wang, Z. Zeng, G. Huang, and Q. Liu, Scr. Mater. 64, 986 (2011).
X. Wu, X. Yang, J. Ma, Q. Huo, J. Wang, and H. Sun, Mater. Des. 43, 206 (2013).
S. H. Park, H. S. Kim, J. H. Bae, C. D. Yim, and B. S. You, Scr. Mater. 69, 250 (2013).
M. R. Barnett, Mater. Sci. Eng. A 464, 1 (2007).
M. R. Barnett, Mater. Sci. Eng. A 464, 8 (2007).
J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, Acta Mater. 51, 2055 (2003).
X. Qiao, Y. Zhao, W. Gan, Y. Chen, M. Zheng, K. Wu, N. Gao, and M. J. Starink, Mater. Sci. Eng. A 61, 95 (2014).
M. Schwartz, S. K. Nash, and R. Zeman, Trans. Metall. Soc. AIME 221, 554 (1961).
N. Hansen, X. Huang, and D. A. Hughes, Mater. Sci. Eng. A 317, 3 (2001).
S.-G. Hong, S. H. Park, and C. S. Lee, Acta Mater. 58, 5873 (2010).
A. S. Khan, A. Pandey, T. Gnäupel-Herold, and R. K. Mishra, Int. J. Plast. 27, 688 (2011).