Preparation and antibacterial properties of gold nanoparticles: a review

Springer Science and Business Media LLC - Tập 19 - Trang 167-187 - 2020
Xiao Gu1, Zhixiang Xu1, Lipeng Gu1, Huayu Xu1, Fengxia Han1, Bo Chen1, Xuejun Pan1,2
1Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
2Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming, China

Tóm tắt

The overuse of antibiotics has led to an increase in bacterial resistance and, in turn, to a decreasing efficiency of the rare available antibiotics. Alternatively, gold nanoparticles are promising antibacterials due to their high specific surface area, easy modification by functional groups and broad-spectrum antibacterial activity. Their antibacterial properties are closely related to particle size, dispersibility and surface modification, which can be tuned by adjusting reaction conditions. Here, we review the synthesis and antibacterial performance of gold nanoparticles in the raw form or modified with metal, organic compounds and carbon. We present the effect of reaction conditions on particle dispersibility and size. We compare the various synthesis methods. Antibacterial activities and their mechanisms are discussed.

Tài liệu tham khảo

Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM (2013) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044 Aksoy I, Kucukkececi H, Sevgi F, Metin O, Hatay Patir I (2020) Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS Appl Mater Interfaces 12(24):26822–26831. https://doi.org/10.1021/acsami.0c02524 Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 6(8):933–940. https://doi.org/10.2217/fmb.11.78 Annamalai A, Christina VL, Sudha D, Kalpana M, Lakshmi PT (2013) Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloid Surface B 108:60–65. https://doi.org/10.1016/j.colsurfb.2013.02.012 Arockia Jency D, Sathyavathi K, Umadevi M, Parimaladevi R (2020) Enhanced bioactivity of Fe3O4–Au nanocomposites—a comparative antibacterial study. Mater Lett. https://doi.org/10.1016/j.matlet.2019.126795 Ayaz Ahmed KB, Raman T, Anbazhagan V (2016) Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Adv 6(50):44415–44424. https://doi.org/10.1039/c6ra03732a Bankura K, Maity D, Mollick MM, Mondal D, Bhowmick B, Roy I, Midya T, Sarkar J, Rana D, Acharya K, Chattopadhyay D (2014) Antibacterial activity of Ag-Au alloy NPs and chemical sensor property of Au NPs synthesized by dextran. Carbohydr Polym 107:151–157. https://doi.org/10.1016/j.carbpol.2014.02.047 Boomi P, Prabu HG (2013) Synthesis, characterization and antibacterial analysis of polyaniline/Au–Pd nanocomposite. Colloid Surface A Physicochem Eng Asp 429:51–59. https://doi.org/10.1016/j.colsurfa.2013.03.053 Boomi P, Prabu HG, Mathiyarasu J (2013) Synthesis and characterization of polyaniline/Ag-Pt nanocomposite for improved antibacterial activity. Colloid Surface B 103:9–14. https://doi.org/10.1016/j.colsurfb.2012.10.044 Boomi P, Prabu HG, Manisankar P, Ravikumar S (2014) Study on antibacterial activity of chemically synthesized PANI-Ag–Au nanocomposite. Appl Surf Sci 300:66–72. https://doi.org/10.1016/j.apsusc.2014.02.003 Boomi P, Poorani GP, Selvam S, Palanisamy S, Jegatheeswaran S, Anand K, Balakumar C, Premkumar K, Prabu HG (2020) Green biosynthesis of gold nanoparticles using Croton sparsiflorus leaves extract and evaluation of UV protection, antibacterial and anticancer applications. Appl Organomet Chem. https://doi.org/10.1002/aoc.5574 Britto Hurtado R, Cortez-Valadez M, Flores-Lopez NS, Flores-Acosta M (2020) Agglomerates of Au–Pt bimetallic nanoparticles: synthesis and antibacterial activity. Gold Bull 53(2):93–100. https://doi.org/10.1007/s13404-020-00277-y Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78(8):2768–2774. https://doi.org/10.1128/AEM.06513-11 Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1955) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 16(16):1655–1656. https://doi.org/10.1039/c39950001655 Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327. https://doi.org/10.1002/smll.200400093 Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216. https://doi.org/10.1016/j.toxlet.2012.11.022 Ding X, Yuan P, Gao N, Zhu H, Yang YY, Xu QH (2017) Au–Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomedicine 13(1):297–305. https://doi.org/10.1016/j.nano.2016.09.003 Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl 44:278–284. https://doi.org/10.1016/j.msec.2014.08.031 Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779. https://doi.org/10.1039/c1cs15237h Dzhardimalieva GI, Pomogailo AD, Golubeva ND, Pomogailo SI, Roshchupkina OS, Novikov GF, Rozenberg AS, Leonowicz M (2011) Metal-containing nanoparticles with core-polymer shell structure. Colloid J 73(4):458–466. https://doi.org/10.1134/s1061933x11040041 Elmoula MA, Panaitescu E, Phan M, Yin D, Richter C, Lewis LH, Menon L (2009) Controlled attachment of gold nanoparticles on ordered titania nanotube arrays. J Mater Chem 19(26):4483–4487. https://doi.org/10.1039/b903197a Emam HE (2019) Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy. J Polym Environ 27(1):210–223. https://doi.org/10.1007/s10924-018-1331-3 Feuz L, Hook F, Reimhult E (2012) Design of intelligent surface modifications and optimal liquid handling for nanoscale bioanalytical sensors. Surfce Modif Liq Handl Biosens. https://doi.org/10.1002/9781118181249.ch3 Fiori-Duarte AT, de Paiva REF, Manzano CM, Lustri WR, Corbi PP (2020) Silver(I) and gold(I) complexes with sulfasalazine: spectroscopic characterization, theoretical studies and antiproliferative activities over Gram-positive and Gram-negative bacterial strains. J Mol Struct 1214(2020):128158. https://doi.org/10.1016/j.molstruc.2020.128158 Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241(105):20–22. https://doi.org/10.1038/physci241020a0 Fu Y, Huang T, Jia B, Zhu J, Wang X (2017) Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. Appl Catal B Environ 202:430–437. https://doi.org/10.1016/j.apcatb.2016.09.051 Gao Y-H, Zhang N-C, Zhong Y-W, Cai H-H, Liu Y-l (2010) Preparation and characterization of antibacterial Au/C core-shell composite. Appl Surf Sci 256(22):6580–6585. https://doi.org/10.1016/j.apsusc.2010.04.051 Gholap H, Warule S, Sangshetti J, Kulkarni G, Banpurkar A, Satpute S, Patil R (2016) Hierarchical nanostructures of Au@ZnO: antibacterial and antibiofilm agent. Appl Microbiol Biotechnol 100(13):5849–5858. https://doi.org/10.1007/s00253-016-7391-1 Gonzalez-Rubio G, Kumar V, Llombart P, Diaz-Nunez P, Bladt E, Altantzis T, Bals S, Pena-Rodriguez O, Noya EG, MacDowell LG (2019) Disconnecting symmetry breaking from seeded growth for the reproducible synthesis of high quality gold nanorods. ACS Nano 13(4):4424–4435. https://doi.org/10.1021/acsnano.8b09658 Gupta A, Moyano DF, Parnsubsakul A, Papadopoulos A, Wang LS, Landis RF, Das R, Rotello VM (2016) Ultrastable and biofunctionalizable gold nanoparticles. ACS Appl Mater Interfaces 8(22):14096–14101. https://doi.org/10.1021/acsami.6b02548 Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376(6537):238–240. https://doi.org/10.1038/376238a0 Hareesh K, Deore AV, Dahiwale SS, Sanjeev G, Kanjilal D, Ojha S, Dhole NA, Kodam KM, Bhoraskar VN, Dhole SD (2015) Antibacterial properties of Au doped polycarbonate synthesized by gamma radiation assisted diffusion method. Radiat Phys Chem 112:97–103. https://doi.org/10.1016/j.radphyschem.2015.03.023 He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ (2014) Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc 136(2):750–757. https://doi.org/10.1021/ja410800y Hsiao C-W, Chen H-L, Liao Z-X, Sureshbabu R, Hsiao H-C, Lin S-J, Chang Y, Sung H-W (2015) Effective photothermal killing of pathogenic bacteria by using spatially tunable colloidal gels with nano-localized heating sources. Adv Funct Mater 25(5):721–728. https://doi.org/10.1002/adfm.201403478 Hu Y, Zhang T, Jiang L, Yao S, Ye H, Lin K, Cui C (2019) Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate. Chem Eng J 368:888–895. https://doi.org/10.1016/j.cej.2019.02.207 Huo D, He J, Li H, Yu H, Shi T, Feng Y, Zhou Z, Hu Y (2014) Fabrication of Au@Ag core-shell NPs as enhanced CT contrast agents with broad antibacterial properties. Colloid Surface B 117:29–35. https://doi.org/10.1016/j.colsurfb.2014.02.008 Jin W, Han L, Han X, Zhang B, Xu P (2016) Interfacial synthesis of lollipop-like Au-polyaniline nanocomposites for catalytic applications. RSC Adv 6(85):81983–81988. https://doi.org/10.1039/c6ra15446h Karthikeyan B, Loganathan B (2012) Strategic green synthesis and characterization of Au/Pt/Ag trimetallic nanocomposites. Mater Lett 85:53–56. https://doi.org/10.1016/j.matlet.2012.06.070 Khan AU, Yuan Q, Wei Y, Khan SU, Tahir K, Khan ZUH, Ahmad A, Ali F, Ali S, Nazir S (2016) Longan fruit juice mediated synthesis of uniformly dispersed spherical AuNPs: cytotoxicity against human breast cancer cell line MCF-7, antioxidant and fluorescent properties. RSC Adv 6(28):23775–23782. https://doi.org/10.1039/c5ra27100b Khan ZUH, Khan A, Chen Y, Ullah Khan A, Shah NS, Muhammad N, Murtaza B, Tahir K, Khan FU, Wan P (2017) Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic Azo dyes using AuNPs/GC as modified paste electrode. J Alloy Compd 725:869–876. https://doi.org/10.1016/j.jallcom.2017.07.222 Khan SA, Shahid S, Lee CS (2020) Green synthesis of gold and silver nanoparticles using leaf extract of clerodendrum inerme; characterization, antimicrobial, and antioxidant activities. Biomolecules. https://doi.org/10.3390/biom10060835 Khandelwal P, Singh DK, Sadhu S, Poddar P (2015) Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg2+ ion sensing, cellular imaging and antibacterial applications. Nanoscale 7(47):19985–20002. https://doi.org/10.1039/c5nr05619e Lagashetty A, Ganiger SK, Shashidhar (2019) Synthesis, characterization and antibacterial study of Ag–Au Bi-metallic nanocomposite by bioreduction using piper betle leaf extract. Heliyon 5(12):e02794. https://doi.org/10.1016/j.heliyon.2019.e02794 Lanh LT, Hoa TT, Cuong ND, Khieu DQ, Quang DT, Van Duy N, Hoa ND, Van Hieu N (2015) Shape and size controlled synthesis of Au nanorods: H2S gas-sensing characterizations and antibacterial application. J Alloy Compd 635:265–271. https://doi.org/10.1016/j.jallcom.2015.02.146 Lee KD, Nagajyothi PC, Sreekanth TVM, Park S (2015) Eco-friendly synthesis of gold nanoparticles (AuNPs) using Inonotus obliquus and their antibacterial, antioxidant and cytotoxic activities. J Ind Eng Chem 26:67–72. https://doi.org/10.1016/j.jiec.2014.11.016 Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014a) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10):10682–10686. https://doi.org/10.1021/nn5042625 Li J, Zhou H, Qian S, Liu Z, Feng J, Jin P, Liu X (2014b) Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application. Appl Phys Lett 104(26):261110(261111–261115). https://doi.org/10.1063/1.4885401 Li R, Li Z, Wu Q, Li D, Shi J, Chen Y, Yu S, Ding T, Qiao C (2016a) One-step synthesis of monodisperse AuNPs@PANI composite nanospheres as recyclable catalysts for 4-nitrophenol reduction. J Nanopart Res 18(6):142. https://doi.org/10.1007/s11051-016-3452-8 Li J, Lv L, Zhang G, Zhou X, Shen A, Hu J (2016b) Core–shell fructus Broussonetia-like Au@Ag@Pt nanoparticles as highly efficient peroxidase mimetics for supersensitive resonance-enhanced Raman sensing. Anal Methods 8(9):2097–2105. https://doi.org/10.1039/c5ay03124a Li D, Liu N, Gao Y, Lin W, Li C (2017) Thermosensitive polymer stabilized core-shell AuNR@Ag nanostructures as “smart” recyclable catalyst. J Nanopart Res 19(11):377. https://doi.org/10.1007/s11051-017-4070-9 Liu S, Lammerhofer M (2019) Functionalized gold nanoparticles for sample preparation: a review. Electrophoresis. https://doi.org/10.1002/elps.201900111 Liu N, Chen X-G, Park H-J, Liu C-G, Liu C-S, Meng X-H, Yu L-J (2006) Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr Polym 64:60–65. https://doi.org/10.1016/j.carbpol.2005.10.028 Lu Z, Zhang J, Yu Z, Liu X, Zhang Z, Wang W, Wang X, Wang Y, Wang D (2017) Vancomycin-hybrid bimetallic Au/Ag composite nanoparticles: preparation of the nanoparticles and characterization of the antibacterial activity. New J Chem 41(13):5276–5279. https://doi.org/10.1039/c7nj01660c Luo L, Duan Z, Li H, Kim J, Henkelman G, Crooks RM (2017) Tunability of the adsorbate binding on bimetallic alloy nanoparticles for the optimization of catalytic hydrogenation. J Am Chem Soc 139(15):5538–5546. https://doi.org/10.1021/jacs.7b01653 Ma X, Yang J, Cai W, Zhu G, Liu J (2016) Preparation of Au nanoparticles decorated polyaniline nanotube and its catalytic oxidation to ascorbic acid. Chem Res Chin U 32(4):702–708. https://doi.org/10.1007/s40242-016-5460-8 Mishra M, Park H, Chun D-M (2016) Photocatalytic properties of Au/Fe2O3 nano-composites prepared by co-precipitation. Adv Powder Technol 27(1):130–138. https://doi.org/10.1016/j.apt.2015.11.009 Moreau F, Bond G, Taylor A (2005) Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents. J Catal 231(1):105–114. https://doi.org/10.1016/j.jcat.2005.01.030 Nirmala Grace A, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloid Surface A 297(1–3):63–70. https://doi.org/10.1016/j.colsurfa.2006.10.024 Nithya P, Sundrarajan M (2020) Ionic liquid functionalized biogenic synthesis of AgAu bimetal doped CeO2 nanoparticles from Justicia adhatoda for pharmaceutical applications: antibacterial and anti-cancer activities. J Photochchem Photobiol B Biol 202:111706. https://doi.org/10.1016/j.jphotobiol.2019.111706 Norouzi M (2020) Gold nanoparticles in glioma theranostics. Pharmacol Res 156(2020):104753. https://doi.org/10.1016/j.phrs.2020.104753 Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater 9(3):035004. https://doi.org/10.1088/1468-6996/9/3/035004 Panahi Y, Mohammadhosseini M, Nejati-Koshki K, Abadi AJ, Moafi HF, Akbarzadeh A, Farshbaf M (2017) Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine. Drug Res (Stuttg) 67(2):77–87. https://doi.org/10.1055/s-0042-115171 Pandey PC, Pandey G (2016) One-pot two-step rapid synthesis of 3-aminopropyltrimethoxysilane-mediated highly catalytic Ag@(PdAu) trimetallic nanoparticles. Catal Sci Technol 6(11):3911–3917. https://doi.org/10.1039/c5cy02040a Rao KJ, Paria S (2015) Mixed phytochemicals mediated synthesis of multifunctional Ag–Au–Pd nanoparticles for glucose oxidation and antimicrobial applications. ACS Appl Mater Inter 7(25):14018–14025. https://doi.org/10.1021/acsami.5b03089 Raula J, Shan J, Nuopponen M, Niskanen A, Jiang H, Kauppinen EI, Tenhu H (2003) Synthesis of gold nanoparticles grafted with a thermoresponsive polymer by surface-induced reversible-addition-fragmentation chain-transfer polymerization. Langmuir 19(8):3499–3504. https://doi.org/10.1021/la026872r Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP, Rodgers H, Hamilton W, Marutharaj T, Webb C, Lawrenz MB, Dakshinamurthy R (2015) Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci 19:1320–1344. https://doi.org/10.2741/4284 Slavin YN, Asnis J, Hafeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65. https://doi.org/10.1186/s12951-017-0308-z Sun Z, Zheng W, Zhu G, Lian J, Wang J, Hui P, He S, Chen W, Jiang X (2019) Albumin broadens the antibacterial capabilities of nonantibiotic small molecule-capped gold nanoparticles. ACS Appl Mater Interfaces 11(49):45381–45389. https://doi.org/10.1021/acsami.9b15107 Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Páez MA (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C 40:24–31. https://doi.org/10.1016/j.msec.2014.03.037 Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46(3):384–389. https://doi.org/10.1016/j.materresbull.2010.12.001 Vanaraj S, Jabastin J, Sathiskumar S, Preethi K (2017) Production and characterization of bio-AuNPs to induce synergistic effect against multidrug resistant bacterial biofilm. J Clust Sci 28(1):227–244. https://doi.org/10.1007/s10876-016-1081-0 Venkatesan P, Santhanalakshmi J (2010) Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Langmuir 26(14):12225–12229. https://doi.org/10.1021/la101088d Venkateswarlu S, Govindaraju S, Sangubotla R, Kim J, Lee MH, Yun K (2019) Biosynthesized highly stable Au/C nanodots: ideal probes for the selective and sensitive detection of Hg(2+) ions. Nanomaterials (Basel) 9(2):245. https://doi.org/10.3390/nano9020245 Vilas V, Philip D, Mathew J (2016) Biosynthesis of Au and Au/Ag alloy nanoparticles using Coleus aromaticus essential oil and evaluation of their catalytic, antibacterial and antiradical activities. J Mol Liq 221:179–189. https://doi.org/10.1016/j.molliq.2016.05.066 Wang L, Yamauchi Y (2011) Strategic synthesis of trimetallic Au@Pd@Pt Core-Shell nanoparticles from poly(vinylpyrrolidone)-based aqueous solution toward highly active electrocatalysts. Chem Mater 23(9):2457–2465. https://doi.org/10.1021/cm200382s Wang L, He H, Yu Y, Sun L, Liu S, Zhang C, He L (2014) Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem 135:45–53. https://doi.org/10.1016/j.jinorgbio.2014.02.016 Wang J, Li J, Guo G, Wang Q, Tang J, Zhao Y, Qin H, Wahafu T, Shen H, Liu X, Zhang X (2016a) Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Sci Rep 6:32699. https://doi.org/10.1038/srep32699 Wang Y, Wan J, Miron RJ, Zhao Y, Zhang Y (2016b) Antibacterial properties and mechanisms of gold–silver nanocages. Nanoscale 8(21):11143–11152. https://doi.org/10.1039/c6nr01114d Wang C, Xu S, Zhang K, Li M, Li Q, Xiao R, Wang S (2016c) Streptomycin-modified Fe3O4–Au@Ag core-satellite magnetic nanoparticles as an effective antibacterial agent. J Mater Sci 52(3):1357–1368. https://doi.org/10.1007/s10853-016-0430-6 Wang G, Feng H, Jin W, Gao A, Peng X, Li W, Wu H, Li Z, Chu PK (2017a) Long-term antibacterial characteristics and cytocompatibility of titania nanotubes loaded with Au nanoparticles without photocatalytic effects. Appl Surf Sci 414:230–237. https://doi.org/10.1016/j.apsusc.2017.04.053 Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X (2017b) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157. https://doi.org/10.1016/j.biomaterials.2016.10.041 Wang H, Peng D, Hu X, Ma X, Ye W, Zhang W, Chang Y, Dong S (2018) Target preparation of multicomponent composites Au@CdS/g-C3N4 as efficient visible light photocatalysts with the assistance of biomolecules. Mater Res Bull 108:176–186. https://doi.org/10.1016/j.materresbull.2018.09.009 Wang X, Guo J, Zhang Q, Zhu S, Liu L, Jiang X, Wei DH, Liu RS, Li L (2020) Gelatin sponge functionalized with gold/silver clusters for antibacterial application. Nanotechnol 31(13):134004. https://doi.org/10.1088/1361-6528/ab59eb Wigginton NS, Titta AD, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJF, Bernier-Latmani R (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44(6):2163–2168. https://doi.org/10.1021/es903187s Yadav N, Jaiswal AK, Dey KK, Yadav VB, Nath G, Srivastava AK, Yadav RR (2018) Trimetallic Au/Pt/Ag based nanofluid for enhanced antibacterial response. Mater Chem Phys 218:10–17. https://doi.org/10.1016/j.matchemphys.2018.07.016 Yang S, Rui KH, Tang XY, Xu Q, Shi M (2017) Rhodium/silver synergistic catalysis in highly enantioselective cycloisomerization/cross coupling of keto-vinylidenecyclopropanes with terminal alkynes. J Am Chem Soc 139(16):5957–5964. https://doi.org/10.1021/jacs.7b02027 Ye J, Liu W, Cai J, Chen S, Zhao X, Zhou H, Qi L (2011) Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J Am Chem Soc 133(4):933–940. https://doi.org/10.1021/ja108205q Yuan CG, Huo C, Gui B, Cao WP (2017) Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. IET Nanobiotechnol 11(5):523–530. https://doi.org/10.1049/iet-nbt.2016.0183 Zanella R, Giorgio S, Henry CR, Louis C (2002) Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B 106(31):7634–7642. https://doi.org/10.1021/jp0144810 Zhang J, Suo X, Zhang J, Han B, Li P, Xue Y, Shi H (2016) One-pot synthesis of Au/TiO2 heteronanostructure composites with SPR effect and its antibacterial activity. Mater Lett 162:235–237. https://doi.org/10.1016/j.matlet.2015.09.136 Zhao X, Jia Y, Li J, Dong R, Zhang J, Ma C, Wang H, Rui Y, Jiang X (2018) Indole derivative-capped gold nanoparticles as an effective bactericide in vivo. ACS Appl Mater Interfaces 10(35):29398–29406. https://doi.org/10.1021/acsami.8b11980 Zhou L, Yu K, Lu F, Lan G, Dai F, Shang S, Hu E (2020) Minimizing antibiotic dosage through in situ formation of gold nanoparticles across antibacterial wound dressings: a facile approach using silk fabric as the base substrate. J Clean Prod 243(2020):118604. https://doi.org/10.1016/j.jclepro.2019.118604 Zou Y, Xie R, Hu E, Qian P, Lu B, Lan G, Lu F (2020) Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. Int J Biol Macromol 148:921–931. https://doi.org/10.1016/j.ijbiomac.2020.01.190