Preorganization boosts the artificial esterase activity of a self-assembling peptide
Tóm tắt
The creation of artificial enzymes to mimic natural enzymes remains a great challenge owing to the complexity of the structural arrangement of the essential amino acids in catalytic centers. In this study, we used the phosphatase-based enzyme-instructed self-assembly (EISA) to supervise artificial esterases’ final structures and catalytic activities. We reported that peptide precursors containing different phosphorylation sites could preorganize into alternated nanostructures and undergo dephosphorylation in the presence of alkaline phosphatase (ALP) with variation in kinetic and thermodynamic profiles. Although identical self-assembly compositions were formed after dephosphorylation, precursors with more enhanced preorganized states tended to better promote ALP dephosphorylation, facilitate further self-assembly, and strengthen the catalytic activities of the final assemblies. We envisioned that our strategy would be useful for further construction and manipulation of various artificial enzymes with superior catalytic activities.
Tài liệu tham khảo
Benkovic SJ, Hammes-Schiffer S. Science, 2003, 301: 1196–1202
Vendruscolo M, Dobson CM. Science, 2006, 313: 1586–1587
Liu Q, Wan K, Shang Y, Wang ZG, Zhang Y, Dai L, Wang C, Wang H, Shi X, Liu D, Ding B. Nat Mater, 2021, 20: 395–402
Makam P, Yamijala SSRKC, Tao K, Shimon LJW, Eisenberg DS, Sawaya MR, Wong BM, Gazit E. Nat Catal, 2019, 2: 977–985
Wang T, Fan X, Hou C, Liu J. Curr Opin Struct Biol, 2018, 51:19–27
Gazit E. Chem Soc Rev, 2007, 36: 1263–1269
Gao Y, Zhao F, Wang Q, Zhang Y, Xu B. Chem Soc Rev, 2010, 39: 3425–3433
Hendricks MP, Sato K, Palmer LC, Stupp SI. Acc Chem Res, 2017, 50: 2440–2448
Tantakitti F, Boekhoven J, Wang X, Kazantsev RV, Yu T, Li J, Zhuang E, Zandi R, Ortony JH, Newcomb CJ, Palmer LC, Shekhawat GS, de la Cruz MO, Schatz GC, Stupp SI. Nat Mater, 2016, 15: 469–476
Fukui T, Kawai S, Fujinuma S, Matsushita Y, Yasuda T, Sakurai T, Seki S, Takeuchi M, Sugiyasu K. Nat Chem, 2017, 9: 493–499
Boekhoven J, Poolman JM, Maity C, Li F, van der Mee L, Minkenberg CB, Mendes E, van Esch JH, Eelkema R. Nat Chem, 2013, 5: 433–437
Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TPJ, Gazit E. Nat Commun, 2014, 5: 5219
Korevaar PA, George SJ, Markvoort AJ, Smulders MMJ, Hilbers PAJ, Schenning APHJ, De Greef TFA, Meijer EW. Nature, 2012, 481: 492–496
Gao J, Wang H, Wang L, Wang J, Kong D, Yang Z. J Am Chem Soc, 2009, 131: 11286–11287
Miao X, Cao W, Zheng W, Wang J, Zhang X, Gao J, Yang C, Kong D, Xu H, Wang L, Yang Z. Angew Chem Int Ed, 2013, 52: 7781–7785
Lock LL, Reyes CD, Zhang P, Cui H. J Am Chem Soc, 2016, 138: 3533–3540
Hsieh MC, Liang C, Mehta AK, Lynn DG, Grover MA. J Am Chem Soc, 2017, 139: 17007–17010
Dai B, Li D, Xi W, Luo F, Zhang X, Zou M, Cao M, Hu J, Wang W, Wei G, Zhang Y, Liu C. Proc Natl Acad Sci USA, 2015, 112: 2996–3001
Ke H, Yang LP, Xie M, Chen Z, Yao H, Jiang W. Nat Chem, 2019, 11: 470–477
Haburcak R, Shi J, Du X, Yuan D, Xu B. J Am Chem Soc, 2016, 138: 15397–15404
Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD. Nature, 2015, 519: 106–109
Bah A, Forman-Kay JD. J Biol Chem, 2016, 291: 6696–6705
Shi J, Fichman G, Schneider JP. Angew Chem Int Ed, 2018, 57: 11188–11192
Hu ZW, Ma MR, Chen YX, Zhao YF, Qiang W, Li YM. J Biol Chem, 2017, 292: 8846
Zhou J, Du X, Berciu C, He H, Shi J, Nicastro D, Xu B. Chem, 2016, 1: 246–263
Zhan J, Cai Y, He S, Wang L, Yang Z. Angew Chem Int Ed, 2018, 57: 1813–1816
Yao Q, Huang Z, Liu D, Chen J, Gao Y. Adv Mater, 2019, 31: 1804814
Huang P, Gao Y, Lin J, Hu H, Liao HS, Yan X, Tang Y, Jin A, Song J, Niu G, Zhang G, Horkay F, Chen X. ACS Nano, 2015, 9: 9517–9527
Shang Y, Zhi D, Feng G, Wang Z, Mao D, Guo S, Liu R, Liu L, Zhang S, Sun S, Wang K, Kong D, Gao J, Yang Z. Nano Lett, 2019, 19: 1560–1569
Wang Z, Liang C, Shang Y, He S, Wang L, Yang Z. Chem Commun, 2018, 54: 2751–2754
Liang C, Wang Z, Xu T, Chen Y, Zheng D, Zhang L, Zhang W, Yang Z, Shi Y, Gao J. ACS Appl Mater Interfaces, 2020, 12: 22492–22498
Schneider F. Angew Chem Int Ed Engl, 1978, 17: 583–592
Kirsch JF, Jencks WP. J Am Chem Soc, 1964, 86: 833–837
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. ACS Catalysis, 2019, 9: 168–187
Liang C, Yan X, Zhang R, Xu T, Zheng D, Tan Z, Chen Y, Gao Z, Wang L, Li X, Yang Z. J Control Release, 2020, 317: 109–117
Liang C, Zheng D, Shi F, Xu T, Yang C, Liu J, Wang L, Yang Z. Nanoscale, 2017, 9: 11987–11993
Yang C, Ren X, Ding D, Wang L, Yang Z. Nanoscale, 2016, 8: 10768–10773
Despres C, Byrne C, Qi H, Cantrelle FX, Huvent I, Chambraud B, Baulieu EE, Jacquot Y, Landrieu I, Lippens G, Smet-Nocca C. Proc Natl Acad Sci USA, 2017, 114: 9080–9085