Preorganization boosts the artificial esterase activity of a self-assembling peptide

Science in China Series B: Chemistry - Tập 64 - Trang 1554-1559 - 2021
Yaoxia Chen1,2, Wenwen Zhang1, Yinghao Ding1, Chunhui Liang3, Yang Shi2, Zhi-Wen Hu2, Ling Wang1,2, Zhimou Yang1,2
1State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
2Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), National Institute for Advanced Materials, Nankai University, Tianjin, China
3Department of Cell Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China

Tóm tắt

The creation of artificial enzymes to mimic natural enzymes remains a great challenge owing to the complexity of the structural arrangement of the essential amino acids in catalytic centers. In this study, we used the phosphatase-based enzyme-instructed self-assembly (EISA) to supervise artificial esterases’ final structures and catalytic activities. We reported that peptide precursors containing different phosphorylation sites could preorganize into alternated nanostructures and undergo dephosphorylation in the presence of alkaline phosphatase (ALP) with variation in kinetic and thermodynamic profiles. Although identical self-assembly compositions were formed after dephosphorylation, precursors with more enhanced preorganized states tended to better promote ALP dephosphorylation, facilitate further self-assembly, and strengthen the catalytic activities of the final assemblies. We envisioned that our strategy would be useful for further construction and manipulation of various artificial enzymes with superior catalytic activities.

Tài liệu tham khảo

Benkovic SJ, Hammes-Schiffer S. Science, 2003, 301: 1196–1202 Vendruscolo M, Dobson CM. Science, 2006, 313: 1586–1587 Liu Q, Wan K, Shang Y, Wang ZG, Zhang Y, Dai L, Wang C, Wang H, Shi X, Liu D, Ding B. Nat Mater, 2021, 20: 395–402 Makam P, Yamijala SSRKC, Tao K, Shimon LJW, Eisenberg DS, Sawaya MR, Wong BM, Gazit E. Nat Catal, 2019, 2: 977–985 Wang T, Fan X, Hou C, Liu J. Curr Opin Struct Biol, 2018, 51:19–27 Gazit E. Chem Soc Rev, 2007, 36: 1263–1269 Gao Y, Zhao F, Wang Q, Zhang Y, Xu B. Chem Soc Rev, 2010, 39: 3425–3433 Hendricks MP, Sato K, Palmer LC, Stupp SI. Acc Chem Res, 2017, 50: 2440–2448 Tantakitti F, Boekhoven J, Wang X, Kazantsev RV, Yu T, Li J, Zhuang E, Zandi R, Ortony JH, Newcomb CJ, Palmer LC, Shekhawat GS, de la Cruz MO, Schatz GC, Stupp SI. Nat Mater, 2016, 15: 469–476 Fukui T, Kawai S, Fujinuma S, Matsushita Y, Yasuda T, Sakurai T, Seki S, Takeuchi M, Sugiyasu K. Nat Chem, 2017, 9: 493–499 Boekhoven J, Poolman JM, Maity C, Li F, van der Mee L, Minkenberg CB, Mendes E, van Esch JH, Eelkema R. Nat Chem, 2013, 5: 433–437 Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TPJ, Gazit E. Nat Commun, 2014, 5: 5219 Korevaar PA, George SJ, Markvoort AJ, Smulders MMJ, Hilbers PAJ, Schenning APHJ, De Greef TFA, Meijer EW. Nature, 2012, 481: 492–496 Gao J, Wang H, Wang L, Wang J, Kong D, Yang Z. J Am Chem Soc, 2009, 131: 11286–11287 Miao X, Cao W, Zheng W, Wang J, Zhang X, Gao J, Yang C, Kong D, Xu H, Wang L, Yang Z. Angew Chem Int Ed, 2013, 52: 7781–7785 Lock LL, Reyes CD, Zhang P, Cui H. J Am Chem Soc, 2016, 138: 3533–3540 Hsieh MC, Liang C, Mehta AK, Lynn DG, Grover MA. J Am Chem Soc, 2017, 139: 17007–17010 Dai B, Li D, Xi W, Luo F, Zhang X, Zou M, Cao M, Hu J, Wang W, Wei G, Zhang Y, Liu C. Proc Natl Acad Sci USA, 2015, 112: 2996–3001 Ke H, Yang LP, Xie M, Chen Z, Yao H, Jiang W. Nat Chem, 2019, 11: 470–477 Haburcak R, Shi J, Du X, Yuan D, Xu B. J Am Chem Soc, 2016, 138: 15397–15404 Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD. Nature, 2015, 519: 106–109 Bah A, Forman-Kay JD. J Biol Chem, 2016, 291: 6696–6705 Shi J, Fichman G, Schneider JP. Angew Chem Int Ed, 2018, 57: 11188–11192 Hu ZW, Ma MR, Chen YX, Zhao YF, Qiang W, Li YM. J Biol Chem, 2017, 292: 8846 Zhou J, Du X, Berciu C, He H, Shi J, Nicastro D, Xu B. Chem, 2016, 1: 246–263 Zhan J, Cai Y, He S, Wang L, Yang Z. Angew Chem Int Ed, 2018, 57: 1813–1816 Yao Q, Huang Z, Liu D, Chen J, Gao Y. Adv Mater, 2019, 31: 1804814 Huang P, Gao Y, Lin J, Hu H, Liao HS, Yan X, Tang Y, Jin A, Song J, Niu G, Zhang G, Horkay F, Chen X. ACS Nano, 2015, 9: 9517–9527 Shang Y, Zhi D, Feng G, Wang Z, Mao D, Guo S, Liu R, Liu L, Zhang S, Sun S, Wang K, Kong D, Gao J, Yang Z. Nano Lett, 2019, 19: 1560–1569 Wang Z, Liang C, Shang Y, He S, Wang L, Yang Z. Chem Commun, 2018, 54: 2751–2754 Liang C, Wang Z, Xu T, Chen Y, Zheng D, Zhang L, Zhang W, Yang Z, Shi Y, Gao J. ACS Appl Mater Interfaces, 2020, 12: 22492–22498 Schneider F. Angew Chem Int Ed Engl, 1978, 17: 583–592 Kirsch JF, Jencks WP. J Am Chem Soc, 1964, 86: 833–837 Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. ACS Catalysis, 2019, 9: 168–187 Liang C, Yan X, Zhang R, Xu T, Zheng D, Tan Z, Chen Y, Gao Z, Wang L, Li X, Yang Z. J Control Release, 2020, 317: 109–117 Liang C, Zheng D, Shi F, Xu T, Yang C, Liu J, Wang L, Yang Z. Nanoscale, 2017, 9: 11987–11993 Yang C, Ren X, Ding D, Wang L, Yang Z. Nanoscale, 2016, 8: 10768–10773 Despres C, Byrne C, Qi H, Cantrelle FX, Huvent I, Chambraud B, Baulieu EE, Jacquot Y, Landrieu I, Lippens G, Smet-Nocca C. Proc Natl Acad Sci USA, 2017, 114: 9080–9085