Preglacial palaeoenvironmental evolution of the Ediacaran Loma Negra Formation, far southwestern Gondwana, Argentina
Tài liệu tham khảo
Alvarenga, 2008, Isotope stratigraphy of Neoproterozoic cap carbonates in the Araras Group, Brazil, Gondwana Res., 13, 469, 10.1016/j.gr.2007.05.004
Arrouy, 2015, Sedimentología y estratigrafía del grupo La Providencia (Nom. Nov.): Cubierta Neoproterozoica, Sistema de Tandilia, Argentina, Lat. Am. J. Sedimentol. Basin Anal., 22, 1
Arrouy, M.J., Warren, L.V., Quaglio, F. Poiré, D.G., Guimarães Simões, M., Boselli, M.R., Gómez-Peral, L.E., 2016. Ediacaran discs from South America: probable soft-bodied macrofossils unlock the paleogeography of the Clymene Ocean. Scientific Reports | 6:30590 |, 1–10. DOI: 10.1038/srep30590.
Asmeron, 1991, Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution, Geochim. Cosmochim. Acta, 55, 2883, 10.1016/0016-7037(91)90453-C
Aubet, 2013, Chemostratigraphic constraints on early Ediacaran carbonate ramp dynamics, Río de la Plata craton, Uruguay. Gondwana Res., 22, 1073, 10.1016/j.gr.2012.03.011
Bagnoud-Velásquez, 2013, Stable isotopes (C, S) and hydrocarbon biomarkers in Neoproterozoic sediments of the upper section of Sierras Bayas Group, Argentina, Precambr. Res., 231, 388, 10.1016/j.precamres.2013.04.001
Banner, 1990, Calculation of simultaneous isotopic and trace-element variations during water-rock interaction with applications to carbonate diagenesis, Geochim. Cosmochim. Acta, 54, 3123, 10.1016/0016-7037(90)90128-8
Barrio, 1991, El contacto entre la Formación Loma Negra (Grupo Sierras Bayas) y la Formación Cerro Negro: un ejemplo de paleokarst, Olavarría, provincia de Buenos Aires, Revista de la Asociación Geológica Argentina, 46, 69
Brand, 1980, Chemical diagenesis of a multicomponent carbonate system −1: Trace elements, J. Sediment. Petrol., 50, 1219
Brand, 1981, Chemical diagenesis of multicomponent carbonate system — 2: stable isotopes, J. Sediment. Petrol., 51, 987
Canfield, 2007, Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life, Science, 315, 92, 10.1126/science.1135013
Casquet, 2012, A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana, Geosci. Front., 3, 137, 10.1016/j.gsf.2011.11.004
Cingolani, 2011, The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: an overview, Int. J. Earth Sci., 100, 221, 10.1007/s00531-010-0611-5
Cingolani, 1991
Cingolani, C.A., Hartmann, L.A., Santos, J.O.S., McNaughton, N.J., 2002. U–Pb SHIMP dating of zircons from the Buenos Aires Complex of the Tandilia Belt, Rio de La Plata Craton, Argentina. In: Actas XV Congreso Geológico Argentino, El Calafate.
Cui, 2015, Redox architecture of an Ediacaran ocean margin: Integrated chemostratigraphic (δ13C–δ34S–87Sr/86Sr–Ce/Ce*) correlation of the Doushantuo Formation, South China, Chem. Geol., 405, 48, 10.1016/j.chemgeo.2015.04.009
Dalziel, 1991, Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent, Geology, 19, 598, 10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2
Derry, 1992, Sedimentary cycling and environmental change in the late Proterozoic: evidence from stable and radiogenic isotopes, Geochim. Cosmochim. Acta, 56, 1317, 10.1016/0016-7037(92)90064-P
Dickson, 1966, Carbonate identification and genesis as revealed by staining, J. Sediment. Petrol., 36, 491
Drummond, 2015, Neoproterozoic peritidal phosphorite from the Sete Lagoas Formation (Brazil) and the Precambrian phosphorus cycle, Sedimentology, 62, 1978, 10.1111/sed.12214
Frank, T.D., Lyons, T.W., 2000. The integrity of δ18O records in Precambrian carbonates: a Mesoproterozoic case study. In: Grotzinger, J.P., James, N.P. (Eds.), SEPM Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. (Society for Sedimentary Geology) Special Publication vol. 65, pp. 315–326 (Tulsa).
Fölling, 2002, Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Africa, Basin Res., 13, 1
Frimmel, 2010, On the reliability of stable carbon isotopes for Neoproterozoic chemostratigraphic correlation, Precambr. Res., 239, 10.1016/j.precamres.2010.01.003
Gaucher, 2004, Chemostratigraphy of the Lower Arroyo del Soldado Group (Vendian, Uruguay) and Palaeoclimatic Implications, Gondwana Res., 3, 715, 10.1016/S1342-937X(05)71058-3
Gaucher, 2005, Litoestratigrafía, bioestratigrafía y correlaciones de las sucesiones sedimentarias del Neoproterozoico-Cambrico del Cratón del Río de La Plata (Uruguay y Argentina), Latin Am. J. Sedimentol. Basin Anal., LAJSBA, 12, 145
Gaucher, 2009, Chemostratigraphy. Neoproterozoic–Cambrian evolution of the Río de la Plata Palaeocontinent, 115
Gómez-Peral, L.E., 2008. Petrología y diagénesis de las unidades sedimentarias precámbricas de Olavarría, Provincia de Buenos Aires. Tesis doctoral, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata Tomo I: 327pp y tomo II: 292pp (online SEDICI-UNLP). http://sedici.unlp.edu.ar/handle/10915/4392.
Gómez-Peral, 2007, Chemostratigraphy and diagenetic constraints on Neoproterozoic carbonate successions from the Sierras Bayas Group, Tandilia System, Argentina, Chem. Geol., 237, 127, 10.1016/j.chemgeo.2006.06.022
Gómez-Peral, 2014, Paleoenvironmental implications of two phosphogenic events in Neoproterozoic sedimentary successions of the Tandilia System, Argentina, Precambr. Res., 252, 88, 10.1016/j.precamres.2014.07.009
Gómez-Peral, 2011, Petrología y evolución diagenética de las facies silicoclásticas del Grupo Sierras Bayas, Sistema de Tandilia, Argentina, Lat. Am. J. Sedimentol. Basin Anal. (LAJSBA), 18, 3
Gómez-Peral, 2017, Paleoclimatic and paleoenvironmental evolution of the Early Neoproterozoic basal dolomitic platform, Río de La Plata Craton, Argentina: insights from the δ13C chemostratigraphy, Sed. Geol., 353, 139, 10.1016/j.sedgeo.2017.03.007
Grossman, 2008, Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: the isotopic record from low latitudes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 268, 222, 10.1016/j.palaeo.2008.03.053
Hagadorn and Waggoner, 2000, Ediacaran fossils from the Southwestern Great Basin, United States. J. Paleont., 74, 349, 10.1017/S0022336000031553
Halverson, 2005, Toward a Neoproterozoic composite carbon-isotope record, Geol. Soc. Am. Bull., 117, 1181, 10.1130/B25630.1
Halverson, 2007, Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater, Palaeogeogr. Palaeoclimatol. Palaeoecol., 256, 103, 10.1016/j.palaeo.2007.02.028
Halverson, 2007, Stratigraphy, and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard, Chem. Geol., 237, 5, 10.1016/j.chemgeo.2006.06.013
Hernández, 2017, Tectonic evolution of the Neoproterozoic Tandilia sedimentary cover, Argentina: new evidence of contraction and extensional events in the Southwest Gondwana margin, J. S. Am. Earth Sci., 79, 230, 10.1016/j.jsames.2017.08.011
Hoffman, 2002, The snowball Earth hypothesis: testing the limits of global change, Terra Nova, 14, 129, 10.1046/j.1365-3121.2002.00408.x
Hoffman, 1998, A Neoproterozoic snowball Earth, Science, 281, 1342, 10.1126/science.281.5381.1342
Hoffman, 2009, A palaeogeographic context for Neoproterozoic glaciation, Palaeogeogr. Palaeoclimatol. Palaeoecol., 277, 158, 10.1016/j.palaeo.2009.03.013
Hoffmann, 2004, U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: constraints on Marinoan glaciation, Geology, v. 32, 817, 10.1130/G20519.1
Hurtgen, 2005, Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite, Geology, 33, 41, 10.1130/G20923.1
Ilyin, 1990, Proterozoic supercontinent, its latest Precambrian rifting, breakup, dispersal into smaller continents, and subsidence of their margins: evidence from Asia, Geology, 18, 1231, 10.1130/0091-7613(1990)018<1231:PSILPR>2.3.CO;2
Iñiguez Rodriguez, A.M., 1999. La Cobertura Sedimentaria de Tandilia. In: Caminos R. (Ed), Geología Argentina. (SEGEMAR). pp 101–106.
Jacobsen, 1999, The Sr, C and O isotopic evolution of Neoproterozoic seawater, Chem. Geol., 161, 37, 10.1016/S0009-2541(99)00080-7
Karlstrom, 2001, Long-lived (1.8–1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia, Precambr. Res., 111, 5, 10.1016/S0301-9268(01)00154-1
Kaufman, 2006, Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India, Precambr. Res., 147, 156, 10.1016/j.precamres.2006.02.007
Kaufman, 1995, Neoproterozoic variations in the C-isotopic composition of seawater; stratigraphic and biogeochemical implications, Precambr. Res., 73, 27, 10.1016/0301-9268(94)00070-8
Knoll, 1986, Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland, Nature, 321, 832, 10.1038/321832a0
Knoll, 1992, Latest Proterozoic stratigraphy and Earth history, Nature, 356, 673, 10.1038/356673a0
Knoll, 2004, A New Period for the Geologic Time Scale, Science, 305, 621, 10.1126/science.1098803
Knoll, 2006, The Ediacaran Period: a new addition to the geologic time scale, Lethaia, 39, 13, 10.1080/00241160500409223
Leanza, 1987, Descubrimiento de fosforitas sedimentarias en el Proterozoico Superior de Tandilia, Buenos Aires, Argentina, Revista de la Asociación Geológica Argentina, 42, 417
Leveratto, 1983, Geología y estratigrafía de la Formación La Tinta (y homólogas) en el área clave de Sierra de La Tinta-Barker-Villa Cacique-Arroyo Calaveras, Provincia de Buenos Aires, Revista de la Asociación Geológica Argentina, 38, 235
Loyd, 2015, Evolution of Neoproterozoic Wonoka-Shuram Anomaly-aged carbonates: Evidence from clumped isotope paleothermometry, Precambr. Res., 264, 179, 10.1016/j.precamres.2015.04.010
Macdonald, 2009, Stratigraphic and tectonic implications of a newly discovered glacial diamictite–cap carbonate couplet in southwestern Mongolia, Geology, 37, 123, 10.1130/G24797A.1
MacDonald, 2010, Calibrating the cryogenian, Science, 327, 1241, 10.1126/science.1183325
Marshall, 1992, Climatic and oceanographic isotopic signals from the carbonate record and their preservation, Geol. Mag., 129, 143, 10.1017/S0016756800008244
Meert, 2008, The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation, Gondwana Res., 14, 5, 10.1016/j.gr.2007.06.007
Melezhik, 2003, δ13C and δ18O variations in primary and secondary carbonate phases: several contrasting examples from Paleoproterozoic 13C-rich metamorphosed dolostones, Chem. Geol., 201, 213, 10.1016/j.chemgeo.2003.07.003
Melezhik, 2001, Chemostratigraphy of Neoproterozoic carbonates: implications for “blind dating”, Terra Nova, 13, 1, 10.1046/j.1365-3121.2001.00318.x
Merdith, 2017, A full-plate global reconstruction of the Neoproterozoic, Gondwana Res., 10.1016/j.gr.2017.04.001
Misi, 2007, Chemostratigraphic correlation of Neoproterozoic successions in South America, Chem. Geol., 237, 143, 10.1016/j.chemgeo.2006.06.019
Narbonne, 1994, Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada; implications for Neoproterozoic correlations and the early evolution of animals; with Suppl. Data 9434, Geol. Soc. Am. Bull., 106, 1281, 10.1130/0016-7606(1994)106<1281:ICABOT>2.3.CO;2
Nogueira, 2001, Hydrocarbons in carbonate rocks of the Neoproterozoic alto Paraguai basin, Mato Grosso, Brazil. An. Acad. Bras. Cienc., 73, 464, 10.1590/S0001-37652001000300018
Pankhurst, 2003, Antiquity of the Río de la Plata craton in Tandilia, southern Buenos Aires province, Argentina, J. S. Am. Earth Sci., 16, 5, 10.1016/S0895-9811(03)00015-4
Perry, 1978, The oxygen isotope composition of 3800 M.Y. old metamorphosed chert and iron formation from Isukasia, West Greenland. J. Geol., 86, 223
Poiré D.G., Gaucher, C., Germs, G., 2007. La superficie “Barker” y su importancia regional, Neoproterozoico del Cratón del Río de La Plata. VI Jornadas Geológicas y Geofísicas Bonaerenses, Actas: 36. Mar del Plata, Argentina.
Poiré, D.G., 1987. Mineralogía y sedimentología de la Formación Sierras Bayas en el Núcleo Septentrional de las sierras homónimas, partido de Olavarría, provincia de Buenos Aires. Unpublisehd PhD Tesis 494, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 271 pp.
Poiré, 1993, Estratigrafía del Precámbrico sedimentario de Olavarría, Sierras Bayas, Provincia de Buenos Aires, Argentina, XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos Act., II, 1
Poiré, 2009, Lithostratigraphy. Neoproterozoic-Cambrian evolution of the Río de la Plata Palaeocontinent, 87
Poiré, 2005, La cubierta sedimentaria precámbrica/paleozoica inferior del Sistema de Tandilia, 51
Poiré, 2018, Glaciations in South America, 527
Pufahl & Hiatt, 2012, Oxygenation of the Earth’s atmosphere–ocean system: a review of physical and chemical sedimentologic responses, Mar. Pet. Geol., 32, 1, 10.1016/j.marpetgeo.2011.12.002
Rapela, 2011, The Rio de la Plata craton and the adjoining Pan-african/brasiliano terranes: their origins and incorporation into south-west Gondwana, Gondwana Res., 20, 673, 10.1016/j.gr.2011.05.001
Shields, 2007, Neoproterozoic glaciomarine and cap dolostone facies of the southwestern Taoudéni Basin (Walidiala Valley, Senegal/Guinea, NW Africa), C.R. Geosci., 339, 186, 10.1016/j.crte.2006.10.002
Squire, 2006, Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?, Earth Planet. Sci. Lett., 250, 116, 10.1016/j.epsl.2006.07.032
Tahata, 2013, Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: Decoding temperature and environmental changes through the Ediacaran, Gondwana Res., 23, 333, 10.1016/j.gr.2012.04.005
Tucker, 1983, Sedimentation of organic-rich limestone in the late Precambrian of southern Norway, Precambr. Res., 22, 293, 10.1016/0301-9268(83)90053-0
van Geldern, 2006, Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite, Palaeogeogr. Palaeoclimatol. Palaeoecol., 240, 47, 10.1016/j.palaeo.2006.03.045
Veizer, 2015, Temperatures and oxygen isotopic composition of Phanerozoic oceans, Earth Sci. Rev., 146, 92, 10.1016/j.earscirev.2015.03.008
Veizer, 2000, Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon, Nature, 408, 698, 10.1038/35047044
Walker, 1989, Why the oxygen isotopic composition of sea water changes with time, Geophys. Res. Lett., 16, 323, 10.1029/GL016i004p00323
Wang, 2014, Organic carbon isotope gradient and ocean stratification across the late Ediacaran-Early Cambrian Yangtze Platform, Sci. China Earth Sci., 57, 919, 10.1007/s11430-013-4732-0
Wang, 2017, Integrated carbon, sulfur, and nitrogen isotope chemostratigraphy of the Ediacaran Lantian Formation in South China: Spatial gradient, ocean redox oscillation, and fossil distribution, Geobiology, 15, 552, 10.1111/gbi.12226
Warren, 2014, The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway, Geology, 42, 391, 10.1130/G35304.1
Warren, 2011, Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay, Terra Nova, 23, 382, 10.1111/j.1365-3121.2011.01023.x
Wickham, 1993, Oxygen and carbon isotope profiles in metasediments from Lizzies Basin, East Humboldt Range, Nevada: constraints onmid-crustal metamorphic andmagmatic volatile fluxes, Contrib. Mineral. Petrol., 112, 46, 10.1007/BF00310955
Xiao, 2016, Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects, Episodes, 39, 540, 10.18814/epiiugs/2016/v39i4/103886
Zhao, 2009, Trace element and strontium isotope constraints on sedimentary environment of Ediacaran carbonates in southern Anhui, South China, Chem. Geol., 265, 345, 10.1016/j.chemgeo.2009.04.015
Zhou, 2007, Ediacaran δ13C chemostratigraphy of South China, Chem. Geol., 237, 89, 10.1016/j.chemgeo.2006.06.021
Zhu, 2007, Integrated Ediacaran (Sinian) chronostratigraphy of South China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 7, 10.1016/j.palaeo.2007.03.025