Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Computational Geometry - Tập 34 - Trang 96-101 - 2006
Christopher Dyken1, Michael S. Floater1
1Centre of Mathematics for Applications, Department of Informatics, University of Oslo, Postbox 1053, Blindern, 0316 Oslo, Norway

Tài liệu tham khảo

Alliez, 2000, Removing degeneracies by perturbing the problem or the world, Reliable Computing, 6, 61, 10.1023/A:1009942427413 Cline, 1984, A storage efficient method for construction of a Thiessen triangulation, Rocky Mountain J. Math., 14, 119, 10.1216/RMJ-1984-14-1-119 Delaunay, 1934, Sur la sphère vide, Bull. Acad. Sci. USSR (VII), Classe Sci. Mat. Nat., 793 Demaret, 2004, Adaptive thinning for terrain modelling and image compression, 319 O. Devillers, M. Teillaud, Perturbations and vertex removal in a 3D Delaunay triangulation, in: SODA 2003, pp. 313–319 Edelsbrunner, 1990, Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms, ACM Trans. Graphics, 9, 67, 10.1145/77635.77639 Lawson, 1977, Software for C1 surface interpolation, 161 Mücke, 1998, A robust implementation for three-dimensional Delaunay triangulations, Int. J. Comput. Geom. Appl., 8, 255, 10.1142/S0218195998000138 O'Rourke, 1998 Seidel, 1998, The nature and meaning of perturbations in geometric computing, Discrete Comput. Geom., 19, 1, 10.1007/PL00009330 Sibson, 1978, Locally equiangular triangulations, Comput. J., 21, 243, 10.1093/comjnl/21.3.243