Predictive modeling of shear strength in fiber-reinforced cementitious matrix-strengthened RC beams using machine learning
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alexander, M., & Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structures—review and critique. Cement and Concrete Research, 122, 17–29. https://doi.org/10.1016/J.CEMCONRES.2019.04.018
Al-Osta, M. A., Isa, M. N., Baluch, M. H., & Rahman, M. K. (2017). Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete. Construction and Building Materials, 134, 279–296. https://doi.org/10.1016/J.CONBUILDMAT.2016.12.094
Ashour, A. F. (2006). Flexural and shear capacities of concrete beams reinforced with GFRP bars. Construction and Building Materials, 20(10), 1005–1015. https://doi.org/10.1016/J.CONBUILDMAT.2005.06.023
Bahraq, A. A., Al-Osta, M. A., Ahmad, S., Al-Zahrani, M. M., Al-Dulaijan, S. O., & Rahman, M. K. (2019). Experimental and Numerical Investigation of Shear Behavior of RC Beams Strengthened by Ultra-High Performance Concrete. International Journal of Concrete Structures and Materials, 13(1), 1–19. https://doi.org/10.1186/S40069-018-0330-Z/FIGURES/25
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Bukhari, I. A., Vollum, R. L., Ahmad, S., & Sagaseta, J. (2015). Shear strengthening of reinforced concrete beams with CFRP. Https://Doi.Org/https://doi.org/10.1680/Macr.2008.62.1.65, 62(1), 65–77. https://doi.org/10.1680/MACR.2008.62.1.65
Campione, G., Cannella, F., & Cavaleri, L. (2017). Shear and flexural strength prediction of corroded R.C. beams. Construction and Building Materials, 149, 395–405. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.125
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/bf00994018
D’Ambrisi, A., & Focacci, F. (2011). Flexural Strengthening of RC Beams with Cement-Based Composites. Journal of Composites for Construction, 15(5), 707–720. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000218
Dauda, B., Oyadiji, S. O., & Potluri, P. (2009). Characterising mechanical properties of braided and woven textile composite beams. Applied Composite Materials, 16(1), 15–31. https://doi.org/10.1007/S10443-008-9073-3/METRICS
Friedman, & Jerome H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
Gonzalez-Libreros, J. H., Sneed, L. H., D’Antino, T., & Pellegrino, C. (2017). Behavior of RC beams strengthened in shear with FRP and FRCM composites. Engineering Structures, 150, 830–842. https://doi.org/10.1016/J.ENGSTRUCT.2017.07.084
Habeeb, M. N., & Ashour, A. F. (2008). Flexural Behavior of Continuous GFRP Reinforced Concrete Beams. Journal of Composites for Construction, 12(2), 115–124. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(115)
Huang, Z., Tu, Y., Meng, S., Ohlsson, U., Täljsten, B., & Elfgren, L. (2020). A practical method for predicting shear deformation of reinforced concrete beams. Engineering Structures, 206, 110116. https://doi.org/10.1016/J.ENGSTRUCT.2019.110116
Kaveh, A., & Khalegi, A. (1998). Prediction of strength for concrete specimens using artificial neural networks. Advances in Engineering Computational Technology, 165–171.
Kaveh, A. (2016b). Applications of metaheuristic optimization algorithms in civil engineering. Applications of Metaheuristic Optimization Algorithms in Civil Engineering, 1–373. https://doi.org/10.1007/978-3-319-48012-1/COVER
Kaveh, A. (2016a). Advances in metaheuristic algorithms for optimal design of structures, second edition. Advances in Metaheuristic Algorithms for Optimal Design of Structures, Second Edition, 1–631. https://doi.org/10.1007/978-3-319-46173-1/COVER
Kaveh, A., & Khavaninzadeh, N. (2023). Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength. Structures, 52, 256–272. https://doi.org/10.1016/J.ISTRUC.2023.03.178
Kaveh, A., & Servati, H. (2001). Design of double layer grids using backpropagation neural networks. Computers & Structures, 79(17), 1561–1568. https://doi.org/10.1016/S0045-7949(01)00034-7
Kumar Tipu, R., Batra, V., Suman, P., & K. S., & Panchal, V. R. (2023). Shear capacity prediction for FRCM-strengthened RC beams using Hybrid ReLU-Activated BPNN model. Structures, 58, 105432. https://doi.org/10.1016/J.ISTRUC.2023.105432
Lampropoulos, A. P., Paschalis, S. A., Tsioulou, O. T., & Dritsos, S. E. (2016). Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC). Engineering Structures, 106, 370–384. https://doi.org/10.1016/J.ENGSTRUCT.2015.10.042
Loreto, G., Babaeidarabad, S., Leardini, L., & Nanni, A. (2015). RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite. International Journal of Advanced Structural Engineering, 7(4), 341–352. https://doi.org/10.1007/S40091-015-0102-9/FIGURES/9
Murad, Y., Tarawneh, A., Arar, F., & Al-Zu’bi, A., Al-Ghwairi, A., Al-Jaafreh, A., & Tarawneh, M. (2021). Flexural strength prediction for concrete beams reinforced with FRP bars using gene expression programming. Structures, 33, 3163–3172. https://doi.org/10.1016/J.ISTRUC.2021.06.045
Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692. https://doi.org/10.1093/biomet/78.3.691
Naser, M. Z., Hawileh, R. A., & Abdalla, J. A. (2019). Fiber-reinforced polymer composites in strengthening reinforced concrete structures: a critical review. Engineering Structures, 198, 109542. https://doi.org/10.1016/J.ENGSTRUCT.2019.109542
Nguyen, T. H., Tran, N. L., Phan, V. T., & Nguyen, D. D. (2023). Prediction of shear capacity of RC beams strengthened with FRCM composite using hybrid ANN-PSO model. Case Studies in Construction Materials, 18, e02183. https://doi.org/10.1016/J.CSCM.2023.E02183
Nilsen, V., Pham, L. T., Hibbard, M., Klager, A., Cramer, S. M., & Morgan, D. (2019). Prediction of Concrete Coefficient of Thermal. 1–25.
Ombres, L. (2015). Structural performances of reinforced concrete beams strengthened in shear with a cement based fiber composite material. Composite Structures, 122, 316–329. https://doi.org/10.1016/J.COMPSTRUCT.2014.11.059
Pearson, K. (1920). Notes on the History of Correlation. Biometrika, 13(1), 45. https://doi.org/10.2307/2331722
Ren, F. M., Liang, Y. W., Chen, G. M., Xie, P., Xiong, M. X., & Wu, D. (2022). FRP-confined steel-reinforced RAC short columns under eccentric compression: a parametric study and a new design calculation model. Composite Structures, 291, 115597. https://doi.org/10.1016/J.COMPSTRUCT.2022.115597
Sabzi, J., Esfahani, M. R., Ozbakkaloglu, T., & Farahi, B. (2020). Effect of concrete strength and longitudinal reinforcement arrangement on the performance of reinforced concrete beams strengthened using EBR and EBROG methods. Engineering Structures, 205, 110072. https://doi.org/10.1016/J.ENGSTRUCT.2019.110072
Said, A., Elsayed, M., El-Azim, A. A., Althoey, F., & Tayeh, B. A. (2022). Using ultra-high performance fiber reinforced concrete in improvement shear strength of reinforced concrete beams. Case Studies in Construction Materials, 16, e01009. https://doi.org/10.1016/J.CSCM.2022.E01009
Sneed, L. H., Verre, S., Carloni, C., & Ombres, L. (2016). Flexural behavior of RC beams strengthened with steel-FRCM composite. Engineering Structures, 127, 686–699. https://doi.org/10.1016/J.ENGSTRUCT.2016.09.006
Sofi, F. A., Zakir, M., & Naqash, J. A. (2022). Experimentally Verified Behavior of Multiple-Shape Hybrid FRP-Concrete-Steel Double-Skin Tubular Columns Under Axial Compression. Lecture Notes in Mechanical Engineering, 167–175. https://doi.org/10.1007/978-981-16-6738-1_14/COVER
Spadea, G., Bencardino, F., Sorrenti, F., & Swamy, R. N. (2015). Structural effectiveness of FRP materials in strengthening RC beams. Engineering Structures, 99, 631–641. https://doi.org/10.1016/J.ENGSTRUCT.2015.05.021
Spadea, G., Bencardino, F., & Swamy, R. N. (1998). Structural Behavior of Composite RC Beams with Externally Bonded CFRP. Journal of Composites for Construction, 2(3), 132–137. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:3(132)
Tipu, R. K., Suman, & Batra, V. (2023). Enhancing prediction accuracy of workability and compressive strength of high-performance concrete through extended dataset and improved machine learning models. Asian Journal of Civil Engineering, 1–22. https://doi.org/10.1007/S42107-023-00768-1/METRICS
Tipu, R. K., Batra, V., Suman, P., & K. S., & Panchal, V. R. (2023a). Enhancing load capacity prediction of column using eReLU-activated BPNN model. Structures, 58, 105600. https://doi.org/10.1016/J.ISTRUC.2023.105600
Van den Broeck, G., Lykov, A., Schleich, M., & Suciu, D. (2022). On the Tractability of SHAP Explanations. Journal of Artificial Intelligence Research, 74, 851–886. https://doi.org/10.1613/JAIR.1.13283
Wakjira, T. G., Ibrahim, M., Ebead, U., & Alam, M. S. (2022). Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM. Engineering Structures, 255, 113903. https://doi.org/10.1016/J.ENGSTRUCT.2022.113903
Wu, B., Zhang, Y., Bai, G., & Wang, J. (2023). Experimental research on mechanical properties of simply composite beam with reactive powdered concrete considering the shear slip effect. Structures, 58, 105499. https://doi.org/10.1016/J.ISTRUC.2023.105499
XuanRui, Y. (2022). Developing an artificial neural network model to predict the durability of the RC beam by machine learning approaches. Case Studies in Construction Materials, 17, e01382. https://doi.org/10.1016/J.CSCM.2022.E01382
Xue, W., Tan, Y., & Zeng, L. (2010). Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates. Composite Structures, 92(3), 612–622. https://doi.org/10.1016/J.COMPSTRUCT.2009.09.036
Zar, J. H. (2005). Spearman Rank Correlation. Encyclopedia of Biostatistics. https://doi.org/10.1002/0470011815.B2A15150