Predictive modeling of shear strength in fiber-reinforced cementitious matrix-strengthened RC beams using machine learning

Rupesh Kumar Tipu1, Vandna Batra2, Suman Suman2
1Department of Civil Engineering, School of Engineering & Technology, K. R. Mangalam University, Gurugram, Haryana, 122103, India
2Department of Computer Science and Engineering, School of Engineering & Technology, K. R. Mangalam University, Gurugram, Haryana, 122103, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexander, M., & Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structures—review and critique. Cement and Concrete Research, 122, 17–29. https://doi.org/10.1016/J.CEMCONRES.2019.04.018

Al-Osta, M. A., Isa, M. N., Baluch, M. H., & Rahman, M. K. (2017). Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete. Construction and Building Materials, 134, 279–296. https://doi.org/10.1016/J.CONBUILDMAT.2016.12.094

Ashour, A. F. (2006). Flexural and shear capacities of concrete beams reinforced with GFRP bars. Construction and Building Materials, 20(10), 1005–1015. https://doi.org/10.1016/J.CONBUILDMAT.2005.06.023

Bahraq, A. A., Al-Osta, M. A., Ahmad, S., Al-Zahrani, M. M., Al-Dulaijan, S. O., & Rahman, M. K. (2019). Experimental and Numerical Investigation of Shear Behavior of RC Beams Strengthened by Ultra-High Performance Concrete. International Journal of Concrete Structures and Materials, 13(1), 1–19. https://doi.org/10.1186/S40069-018-0330-Z/FIGURES/25

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Bukhari, I. A., Vollum, R. L., Ahmad, S., & Sagaseta, J. (2015). Shear strengthening of reinforced concrete beams with CFRP. Https://Doi.Org/https://doi.org/10.1680/Macr.2008.62.1.65, 62(1), 65–77. https://doi.org/10.1680/MACR.2008.62.1.65

Campione, G., Cannella, F., & Cavaleri, L. (2017). Shear and flexural strength prediction of corroded R.C. beams. Construction and Building Materials, 149, 395–405. https://doi.org/10.1016/J.CONBUILDMAT.2017.05.125

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17-August-2016, 785–794. https://doi.org/10.1145/2939672.2939785

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/bf00994018

D’Ambrisi, A., & Focacci, F. (2011). Flexural Strengthening of RC Beams with Cement-Based Composites. Journal of Composites for Construction, 15(5), 707–720. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000218

Dauda, B., Oyadiji, S. O., & Potluri, P. (2009). Characterising mechanical properties of braided and woven textile composite beams. Applied Composite Materials, 16(1), 15–31. https://doi.org/10.1007/S10443-008-9073-3/METRICS

Friedman, & Jerome H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.

Gonzalez-Libreros, J. H., Sneed, L. H., D’Antino, T., & Pellegrino, C. (2017). Behavior of RC beams strengthened in shear with FRP and FRCM composites. Engineering Structures, 150, 830–842. https://doi.org/10.1016/J.ENGSTRUCT.2017.07.084

Habeeb, M. N., & Ashour, A. F. (2008). Flexural Behavior of Continuous GFRP Reinforced Concrete Beams. Journal of Composites for Construction, 12(2), 115–124. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(115)

Huang, Z., Tu, Y., Meng, S., Ohlsson, U., Täljsten, B., & Elfgren, L. (2020). A practical method for predicting shear deformation of reinforced concrete beams. Engineering Structures, 206, 110116. https://doi.org/10.1016/J.ENGSTRUCT.2019.110116

Kaveh, A., & Khalegi, A. (1998). Prediction of strength for concrete specimens using artificial neural networks. Advances in Engineering Computational Technology, 165–171.

Kaveh, A. (2016b). Applications of metaheuristic optimization algorithms in civil engineering. Applications of Metaheuristic Optimization Algorithms in Civil Engineering, 1–373. https://doi.org/10.1007/978-3-319-48012-1/COVER

Kaveh, A. (2016a). Advances in metaheuristic algorithms for optimal design of structures, second edition. Advances in Metaheuristic Algorithms for Optimal Design of Structures, Second Edition, 1–631. https://doi.org/10.1007/978-3-319-46173-1/COVER

Kaveh, A., & Khavaninzadeh, N. (2023). Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength. Structures, 52, 256–272. https://doi.org/10.1016/J.ISTRUC.2023.03.178

Kaveh, A., & Servati, H. (2001). Design of double layer grids using backpropagation neural networks. Computers & Structures, 79(17), 1561–1568. https://doi.org/10.1016/S0045-7949(01)00034-7

Kumar Tipu, R., Batra, V., Suman, P., & K. S., & Panchal, V. R. (2023). Shear capacity prediction for FRCM-strengthened RC beams using Hybrid ReLU-Activated BPNN model. Structures, 58, 105432. https://doi.org/10.1016/J.ISTRUC.2023.105432

Lampropoulos, A. P., Paschalis, S. A., Tsioulou, O. T., & Dritsos, S. E. (2016). Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC). Engineering Structures, 106, 370–384. https://doi.org/10.1016/J.ENGSTRUCT.2015.10.042

Loreto, G., Babaeidarabad, S., Leardini, L., & Nanni, A. (2015). RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite. International Journal of Advanced Structural Engineering, 7(4), 341–352. https://doi.org/10.1007/S40091-015-0102-9/FIGURES/9

Murad, Y., Tarawneh, A., Arar, F., & Al-Zu’bi, A., Al-Ghwairi, A., Al-Jaafreh, A., & Tarawneh, M. (2021). Flexural strength prediction for concrete beams reinforced with FRP bars using gene expression programming. Structures, 33, 3163–3172. https://doi.org/10.1016/J.ISTRUC.2021.06.045

Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692. https://doi.org/10.1093/biomet/78.3.691

Naser, M. Z., Hawileh, R. A., & Abdalla, J. A. (2019). Fiber-reinforced polymer composites in strengthening reinforced concrete structures: a critical review. Engineering Structures, 198, 109542. https://doi.org/10.1016/J.ENGSTRUCT.2019.109542

Nguyen, T. H., Tran, N. L., Phan, V. T., & Nguyen, D. D. (2023). Prediction of shear capacity of RC beams strengthened with FRCM composite using hybrid ANN-PSO model. Case Studies in Construction Materials, 18, e02183. https://doi.org/10.1016/J.CSCM.2023.E02183

Nilsen, V., Pham, L. T., Hibbard, M., Klager, A., Cramer, S. M., & Morgan, D. (2019). Prediction of Concrete Coefficient of Thermal. 1–25.

Ombres, L. (2015). Structural performances of reinforced concrete beams strengthened in shear with a cement based fiber composite material. Composite Structures, 122, 316–329. https://doi.org/10.1016/J.COMPSTRUCT.2014.11.059

Pearson, K. (1920). Notes on the History of Correlation. Biometrika, 13(1), 45. https://doi.org/10.2307/2331722

Ren, F. M., Liang, Y. W., Chen, G. M., Xie, P., Xiong, M. X., & Wu, D. (2022). FRP-confined steel-reinforced RAC short columns under eccentric compression: a parametric study and a new design calculation model. Composite Structures, 291, 115597. https://doi.org/10.1016/J.COMPSTRUCT.2022.115597

Sabzi, J., Esfahani, M. R., Ozbakkaloglu, T., & Farahi, B. (2020). Effect of concrete strength and longitudinal reinforcement arrangement on the performance of reinforced concrete beams strengthened using EBR and EBROG methods. Engineering Structures, 205, 110072. https://doi.org/10.1016/J.ENGSTRUCT.2019.110072

Said, A., Elsayed, M., El-Azim, A. A., Althoey, F., & Tayeh, B. A. (2022). Using ultra-high performance fiber reinforced concrete in improvement shear strength of reinforced concrete beams. Case Studies in Construction Materials, 16, e01009. https://doi.org/10.1016/J.CSCM.2022.E01009

Sneed, L. H., Verre, S., Carloni, C., & Ombres, L. (2016). Flexural behavior of RC beams strengthened with steel-FRCM composite. Engineering Structures, 127, 686–699. https://doi.org/10.1016/J.ENGSTRUCT.2016.09.006

Sofi, F. A., Zakir, M., & Naqash, J. A. (2022). Experimentally Verified Behavior of Multiple-Shape Hybrid FRP-Concrete-Steel Double-Skin Tubular Columns Under Axial Compression. Lecture Notes in Mechanical Engineering, 167–175. https://doi.org/10.1007/978-981-16-6738-1_14/COVER

Spadea, G., Bencardino, F., Sorrenti, F., & Swamy, R. N. (2015). Structural effectiveness of FRP materials in strengthening RC beams. Engineering Structures, 99, 631–641. https://doi.org/10.1016/J.ENGSTRUCT.2015.05.021

Spadea, G., Bencardino, F., & Swamy, R. N. (1998). Structural Behavior of Composite RC Beams with Externally Bonded CFRP. Journal of Composites for Construction, 2(3), 132–137. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:3(132)

Tipu, R. K., Suman, & Batra, V. (2023). Enhancing prediction accuracy of workability and compressive strength of high-performance concrete through extended dataset and improved machine learning models. Asian Journal of Civil Engineering, 1–22. https://doi.org/10.1007/S42107-023-00768-1/METRICS

Tipu, R. K., Batra, V., Suman, P., & K. S., & Panchal, V. R. (2023a). Enhancing load capacity prediction of column using eReLU-activated BPNN model. Structures, 58, 105600. https://doi.org/10.1016/J.ISTRUC.2023.105600

Van den Broeck, G., Lykov, A., Schleich, M., & Suciu, D. (2022). On the Tractability of SHAP Explanations. Journal of Artificial Intelligence Research, 74, 851–886. https://doi.org/10.1613/JAIR.1.13283

Wakjira, T. G., Ibrahim, M., Ebead, U., & Alam, M. S. (2022). Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM. Engineering Structures, 255, 113903. https://doi.org/10.1016/J.ENGSTRUCT.2022.113903

Wu, B., Zhang, Y., Bai, G., & Wang, J. (2023). Experimental research on mechanical properties of simply composite beam with reactive powdered concrete considering the shear slip effect. Structures, 58, 105499. https://doi.org/10.1016/J.ISTRUC.2023.105499

XuanRui, Y. (2022). Developing an artificial neural network model to predict the durability of the RC beam by machine learning approaches. Case Studies in Construction Materials, 17, e01382. https://doi.org/10.1016/J.CSCM.2022.E01382

Xue, W., Tan, Y., & Zeng, L. (2010). Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates. Composite Structures, 92(3), 612–622. https://doi.org/10.1016/J.COMPSTRUCT.2009.09.036

Zar, J. H. (2005). Spearman Rank Correlation. Encyclopedia of Biostatistics. https://doi.org/10.1002/0470011815.B2A15150

Zhang, J., Zhou, P., Guan, C., Liu, T. Q., Kang, W. H., Feng, P., & Gao, S. (2021). An ultra-lightweight CFRP beam-string structure. Composite Structures, 257, 113149. https://doi.org/10.1016/J.COMPSTRUCT.2020.113149