Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency

Metabolic Engineering - Tập 15 - Trang 67-74 - 2013
Sang Woo Seo1, Jae‐Seong Yang2, Inhae Kim3, Jina Yang1, Byung Eun Min2, Sanguk Kim4,3, Gyoo Yeol Jung1,2
1Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
2School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
3Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
4Division of IT Convergence Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ajikumar, 2010, Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli, Science, 330, 70, 10.1126/science.1191652

Allen, 2005, The cryo-EM structure of a translation initiation complex from Escherichia coli, Cell, 121, 703, 10.1016/j.cell.2005.03.023

Alper, 2005, Tuning genetic control through promoter engineering, Proc. Nat. Acad. Sci. U S A, 102, 12678, 10.1073/pnas.0504604102

Boyle, 2012, Parts plus pipes: synthetic biology approaches to metabolic engineering, Metab. Eng., 14, 223, 10.1016/j.ymben.2011.10.003

Copeland, 2012, Computational tools for metabolic engineering, Metab. Eng., 14, 270, 10.1016/j.ymben.2012.03.001

De Smit, 2003, Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA, J. Mol. Biol., 331, 737, 10.1016/S0022-2836(03)00809-X

Dirks, 2007, Thermodynamic analysis of interacting nucleic acid strands, SIAM Rev., 49, 65, 10.1137/060651100

Dos Reis, 2004, Solving the riddle of codon usage preferences: a test for translational selection, Nucleic. Acids. Res., 32, 5036, 10.1093/nar/gkh834

Gibson, 2010, Creation of a bacterial cell controlled by a chemically synthesized genome, Science, 329, 52, 10.1126/science.1190719

Isaacs, 2011, Precise manipulation of chromosomes in vivo enables genome-wide codon replacement, Science, 333, 348, 10.1126/science.1205822

Jensen, 1998, Artificial promoters for metabolic optimization, Biotechnol. Bioeng., 58, 191, 10.1002/(SICI)1097-0290(19980420)58:2/3<191::AID-BIT11>3.0.CO;2-G

Keasling, 2010, Manufacturing molecules through metabolic engineering, Science, 330, 1355, 10.1126/science.1193990

Keasling, 2012, Synthetic biology and the development of tools for metabolic engineering, Metab. Eng., 14, 189, 10.1016/j.ymben.2012.01.004

Komarova, 2002, Protein S1 counteracts the inhibitory effect of the extended Shine–Dalgarno sequence on translation, RNA, 8, 1137, 10.1017/S1355838202029990

Kosuri, 2010, Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips, Nat. Biotechnol., 28, 1295, 10.1038/nbt.1716

Kudla, 2009, Coding-sequence determinants of gene expression in Escherichia coli, Science, 324, 255, 10.1126/science.1170160

Lu, 2007, Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation, Nat. Biotechnol., 25, 117, 10.1038/nbt1270

Makino, 2011, Comprehensive engineering of Escherichia coli for enhanced expression of IgG antibodies, Metab. Eng., 13, 241, 10.1016/j.ymben.2010.11.002

Marzi, 2007, Structured mRNAs regulate translation initiation by binding to the platform of the ribosome, Cell, 130, 1019, 10.1016/j.cell.2007.07.008

Mijakovic, 2005, Tunable promoters in systems biology, Curr. Opin. Biotechnol., 16, 329, 10.1016/j.copbio.2005.04.003

Park, 2007, Design of 5′-untranslated region variants for tunable expression in Escherichia coli, Biochem. Biophys. Res. Commun., 356, 136, 10.1016/j.bbrc.2007.02.127

Pfleger, 2006, Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes, Nat. Biotechnol., 24, 1027, 10.1038/nbt1226

Plotkin, 2011, Synonymous but not the same: the causes and consequences of codon bias, Nat. Rev. Genet., 12, 32, 10.1038/nrg2899

Ramakrishnan, 2002, Ribosome structure and the mechanism of translation, Cell, 108, 557, 10.1016/S0092-8674(02)00619-0

Salis, 2009, Automated design of synthetic ribosome binding sites to control protein expression, Nat. Biotechnol., 27, 946, 10.1038/nbt.1568

Seo, 2012, Synthetic regulatory tools for microbial engineering, Biotechnol. Bioprocess Eng., 17, 1, 10.1007/s12257-011-0563-z

Seo, 2009, Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli. Biotechnol, Bioeng., 104, 611, 10.1002/bit.22431

Sharp, 1987, The codon Adaptation Index-a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res., 15, 1281, 10.1093/nar/15.3.1281

Sinha, 2006, Probing messenger RNA conformational heterogeneity using single-molecule fluorescence anisotropy, Appl. Phys. Lett., 88

Studer, 2006, Unfolding of mRNA secondary structure by the bacterial translation initiation complex, Mol. Cell, 22, 105, 10.1016/j.molcel.2006.02.014

Yadav, 2010, Reevaluating synthesis by biology, Curr. Opin. Microbiol., 13, 371, 10.1016/j.mib.2010.04.002