Predictive Atomic Resolution Descriptions of Intrinsically Disordered hTau40 and α-Synuclein in Solution from NMR and Small Angle Scattering

Structure - Tập 22 - Trang 238-249 - 2014
Martin Schwalbe1,2, Valéry Ozenne3,4,5, Stefan Bibow1, Mariusz Jaremko1, Lukasz Jaremko1, Michal Gajda1, Malene Ringkjøbing Jensen3,4,5, Jacek Biernat6,7, Stefan Becker1, Eckhard Mandelkow6,7, Markus Zweckstetter1,2,8, Martin Blackledge3,4,5
1Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
2German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
3University Grenoble Alpes, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France
4CNRS, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France
5CEA, DSV, Protein Dynamics and Flexibility, Institut de Biologie Structurale, 38000 Grenoble, France
6CEASAR Research Center, 53175 Bonn, Germany
7German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
8Center for the Molecular Physiology of the Brain, University Medical Center, 37073 Göttingen, Germany

Tài liệu tham khảo

Allison, 2009, Determination of the free energy landscape of alpha-synuclein using spin label nuclear magnetic resonance measurements, J. Am. Chem. Soc., 131, 18314, 10.1021/ja904716h Ball, 2011, Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides, Biochemistry, 50, 7612, 10.1021/bi200732x Bernadó, 2005, Defining long-range order and local disorder in native alpha-synuclein using residual dipolar couplings, J. Am. Chem. Soc., 127, 17968, 10.1021/ja055538p Bernadó, 2005, A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering, Proc. Natl. Acad. Sci. USA, 102, 17002, 10.1073/pnas.0506202102 Bernstein, 2004, α-synuclein: stable compact and extended monomeric structures and pH dependence of dimer formation, J. Am. Soc. Mass Spectrom., 15, 1435, 10.1016/j.jasms.2004.08.003 Bertoncini, 2005, Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation, J. Biol. Chem., 280, 30649, 10.1074/jbc.C500288200 Bertoncini, 2005, Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein, Proc. Natl. Acad. Sci. USA, 102, 1430, 10.1073/pnas.0407146102 Bibow, 2011, Structural impact of proline-directed pseudophosphorylation at AT8, AT100, and PHF1 epitopes on 441-residue tau, J. Am. Chem. Soc., 133, 15842, 10.1021/ja205836j Blanch, 2000, Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme, J. Mol. Biol., 301, 553, 10.1006/jmbi.2000.3981 Bucciantini, 2002, Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature, 416, 507, 10.1038/416507a Carrell, 1997, Conformational disease, Lancet, 350, 134, 10.1016/S0140-6736(97)02073-4 Cho, 2009, Structural characterization of alpha-synuclein in an aggregation prone state, Protein Sci., 18, 1840, 10.1002/pro.194 Creamer, 2002, Determinants of the polyproline II helix from modeling studies, Adv. Protein Chem., 62, 263, 10.1016/S0065-3233(02)62010-8 Dedmon, 2005, Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations, J. Am. Chem. Soc., 127, 476, 10.1021/ja044834j Delaglio, 1995, NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J. Biomol. NMR, 6, 277, 10.1007/BF00197809 Dobson, 1999, Protein misfolding, evolution and disease, Trends Biochem. Sci., 24, 329, 10.1016/S0968-0004(99)01445-0 Dunker, 2008, Function and structure of inherently disordered proteins, Curr. Opin. Struct. Biol., 18, 756, 10.1016/j.sbi.2008.10.002 Dyson, 2004, Unfolded proteins and protein folding studied by NMR, Chem. Rev., 104, 3607, 10.1021/cr030403s Dyson, 2005, Intrinsically unstructured proteins and their functions, Nat. Rev. Mol. Cell Biol., 6, 197, 10.1038/nrm1589 Eker, 2003, Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy, J. Am. Chem. Soc., 125, 8178, 10.1021/ja034625j Eliezer, 2001, Conformational properties of alpha-synuclein in its free and lipid-associated states, J. Mol. Biol., 307, 1061, 10.1006/jmbi.2001.4538 Fink, 2005, Natively unfolded proteins, Curr. Opin. Struct. Biol., 15, 35, 10.1016/j.sbi.2005.01.002 Fisher, 2011, Constructing ensembles for intrinsically disordered proteins, Curr. Opin. Struct. Biol., 21, 426, 10.1016/j.sbi.2011.04.001 Fitzkee, 2005, The Protein Coil Library: a structural database of nonhelix, nonstrand fragments derived from the PDB, Proteins, 58, 852, 10.1002/prot.20394 Gurry, 2013, The dynamic structure of α-synuclein multimers, J. Am. Chem. Soc., 135, 3865, 10.1021/ja310518p Jeganathan, 2006, Global hairpin folding of tau in solution, Biochemistry, 45, 2283, 10.1021/bi0521543 Jensen, 2010, Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts, J. Am. Chem. Soc., 132, 1270, 10.1021/ja909973n Jensen, 2013, Describing intrinsically disordered proteins at atomic resolution by NMR, Curr. Opin. Struct. Biol., 23, 426, 10.1016/j.sbi.2013.02.007 Jha, 2005, Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library, Biochemistry, 44, 9691, 10.1021/bi0474822 Keiderling, 2002, Unfolded peptides and proteins studied with infrared absorption and vibrational circular dichroism spectra, Adv. Protein Chem., 62, 111, 10.1016/S0065-3233(02)62007-8 Konarev, 2006, ATSAS 2.1, a program package for small-angle scattering data analysis, J. Appl. Crystallogr., 39, 277, 10.1107/S0021889806004699 Krimm, 1974, Circular-dichroism spectrum and structure of unordered polypeptides and proteins, Isr. J. Chem., 12, 189, 10.1002/ijch.197400018 Maiti, 2004, Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein, J. Am. Chem. Soc., 126, 2399, 10.1021/ja0356176 Makowska, 2006, Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins, Proc. Natl. Acad. Sci. USA, 103, 1744, 10.1073/pnas.0510549103 Marsh, 2006, Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation, Protein Sci., 15, 2795, 10.1110/ps.062465306 Marsh, 2008, Calculation of residual dipolar couplings from disordered state ensembles using local alignment, J. Am. Chem. Soc., 130, 7804, 10.1021/ja802220c Mästle, 1995, Conformational study of linear alternating and mixed D- and L-proline oligomers using electronic and vibrational CD and Fourier transform IR, Biopolymers, 36, 623, 10.1002/bip.360360508 McColl, 2004, Vibrational Raman optical activity characterization of poly(l-proline) II helix in alanine oligopeptides, J. Am. Chem. Soc., 126, 5076, 10.1021/ja049271q Meier, 2008, Conformational distributions of unfolded polypeptides from novel NMR techniques, J. Chem. Phys., 128, 052204, 10.1063/1.2838167 Mittag, 2007, Atomic-level characterization of disordered protein ensembles, Curr. Opin. Struct. Biol., 17, 3, 10.1016/j.sbi.2007.01.009 Mittag, 2010, Protein dynamics and conformational disorder in molecular recognition, J. Mol. Recognit., 23, 105 Mukrasch, 2007, Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation, J. Am. Chem. Soc., 129, 5235, 10.1021/ja0690159 Mukrasch, 2007, The “jaws” of the tau-microtubule interaction, J. Biol. Chem., 282, 12230, 10.1074/jbc.M607159200 Mukrasch, 2009, Structural polymorphism of 441-residue tau at single residue resolution, PLoS Biol., 7, e34, 10.1371/journal.pbio.1000034 Mylonas, 2008, Domain conformation of tau protein studied by solution small-angle X-ray scattering, Biochemistry, 47, 10345, 10.1021/bi800900d Narayanan, 2010, Automatic assignment of the intrinsically disordered protein Tau with 441-residues, J. Am. Chem. Soc., 132, 11906, 10.1021/ja105657f Nath, 2012, The conformational ensembles of α-synuclein and tau: combining single-molecule FRET and simulations, Biophys. J., 103, 1940, 10.1016/j.bpj.2012.09.032 Nodet, 2009, Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings, J. Am. Chem. Soc., 131, 17908, 10.1021/ja9069024 Ozenne, 2012, Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables, Bioinformatics, 28, 1463, 10.1093/bioinformatics/bts172 Ozenne, 2012, Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution, J. Am. Chem. Soc., 134, 15138, 10.1021/ja306905s Pappu, 2002, A simple model for polyproline II structure in unfolded states of alanine-based peptides, Protein Sci., 11, 2437, 10.1110/ps.0217402 Preuss, 1997, The ‘jaws’ model of tau-microtubule interaction examined in CHO cells, J. Cell Sci., 110, 789, 10.1242/jcs.110.6.789 Rasia, 2011, Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins, J. Biomol. NMR, 51, 369, 10.1007/s10858-011-9567-4 Rückert, 2000, Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments, J. Am. Chem. Soc., 122, 7793, 10.1021/ja001068h Salmon, 2010, NMR characterization of long-range order in intrinsically disordered proteins, J. Am. Chem. Soc., 132, 8407, 10.1021/ja101645g Schneider, 2012, Towards a robust description of intrinsic protein disorder using nuclear magnetic resonance spectroscopy, Mol. Biosyst., 8, 58, 10.1039/C1MB05291H Schweers, 1994, Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure, J. Biol. Chem., 269, 24290, 10.1016/S0021-9258(19)51080-8 Schweitzer-Stenner, 2013, Different degrees of disorder in long disordered peptides can be discriminated by vibrational spectroscopy, J. Phys. Chem. B, 117, 6927, 10.1021/jp402869k Sgourakis, 2011, Atomic-level characterization of the ensemble of the Aβ(1-42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms, J. Mol. Biol., 405, 570, 10.1016/j.jmb.2010.10.015 Shen, 2007, Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology, J. Biomol. NMR, 38, 289, 10.1007/s10858-007-9166-6 Shi, 2002, Polyproline II structure in a sequence of seven alanine residues, Proc. Natl. Acad. Sci. USA, 99, 9190, 10.1073/pnas.112193999 Shi, 2006, Conformation of the backbone in unfolded proteins, Chem. Rev., 106, 1877, 10.1021/cr040433a Sibille, 2012, Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS, Biochem. Soc. Trans., 40, 955, 10.1042/BST20120149 Smith, 1996, Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations, J. Mol. Biol., 255, 494, 10.1006/jmbi.1996.0041 Svergun, 1995, CRYSOL - A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Crystallogr., 28, 768, 10.1107/S0021889895007047 Swindells, 1995, Intrinsic phi, psi propensities of amino acids, derived from the coil regions of known structures, Nat. Struct. Biol., 2, 596, 10.1038/nsb0795-596 Syme, 2002, A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behaviour of natively unfolded proteins, Eur. J. Biochem., 269, 148, 10.1046/j.0014-2956.2001.02633.x Tiffany, 1969, Circular dichroism of random polypeptide chain, Biopolymers, 8, 347, 10.1002/bip.1969.360080306 Tompa, 2002, Intrinsically unstructured proteins, Trends Biochem. Sci., 27, 527, 10.1016/S0968-0004(02)02169-2 Tompa, 2011, Unstructural biology coming of age, Curr. Opin. Struct. Biol., 21, 419, 10.1016/j.sbi.2011.03.012 Tompa, 2008, Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions, Trends Biochem. Sci., 33, 2, 10.1016/j.tibs.2007.10.003 Ullman, 2011, Explaining the structural plasticity of α-synuclein, J. Am. Chem. Soc., 133, 19536, 10.1021/ja208657z Uversky, 2002, Natively unfolded proteins: a point where biology waits for physics, Protein Sci., 11, 739, 10.1110/ps.4210102 Uversky, 2004, Conformational constraints for amyloid fibrillation: the importance of being unfolded, Biochim. Biophys. Acta (BBA)-Proteins Proteomics, 1698, 131, 10.1016/j.bbapap.2003.12.008 Varadi, 2013, pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins, Nucleic Acids Res. Wang, 2011, A soluble α-synuclein construct forms a dynamic tetramer, Proc. Natl. Acad. Sci. USA, 108, 17797, 10.1073/pnas.1113260108 Weinreb, 1996, NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded, Biochemistry, 35, 13709, 10.1021/bi961799n Wells, 2008, Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain, Proc. Natl. Acad. Sci. USA, 105, 5762, 10.1073/pnas.0801353105 Woody, 2009, Circular dichroism spectrum of peptides in the poly(Pro)II conformation, J. Am. Chem. Soc., 131, 8234, 10.1021/ja901218m Wu, 2008, Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation, J. Mol. Biol., 378, 1104, 10.1016/j.jmb.2008.03.017 Zagrovic, 2005, Unusual compactness of a polyproline type II structure, Proc. Natl. Acad. Sci. USA, 102, 11698, 10.1073/pnas.0409693102 Zhang, 2003, RefDB: a database of uniformly referenced protein chemical shifts, J. Biomol. NMR, 25, 173, 10.1023/A:1022836027055