Predictive Atomic Resolution Descriptions of Intrinsically Disordered hTau40 and α-Synuclein in Solution from NMR and Small Angle Scattering
Tài liệu tham khảo
Allison, 2009, Determination of the free energy landscape of alpha-synuclein using spin label nuclear magnetic resonance measurements, J. Am. Chem. Soc., 131, 18314, 10.1021/ja904716h
Ball, 2011, Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides, Biochemistry, 50, 7612, 10.1021/bi200732x
Bernadó, 2005, Defining long-range order and local disorder in native alpha-synuclein using residual dipolar couplings, J. Am. Chem. Soc., 127, 17968, 10.1021/ja055538p
Bernadó, 2005, A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering, Proc. Natl. Acad. Sci. USA, 102, 17002, 10.1073/pnas.0506202102
Bernstein, 2004, α-synuclein: stable compact and extended monomeric structures and pH dependence of dimer formation, J. Am. Soc. Mass Spectrom., 15, 1435, 10.1016/j.jasms.2004.08.003
Bertoncini, 2005, Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation, J. Biol. Chem., 280, 30649, 10.1074/jbc.C500288200
Bertoncini, 2005, Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein, Proc. Natl. Acad. Sci. USA, 102, 1430, 10.1073/pnas.0407146102
Bibow, 2011, Structural impact of proline-directed pseudophosphorylation at AT8, AT100, and PHF1 epitopes on 441-residue tau, J. Am. Chem. Soc., 133, 15842, 10.1021/ja205836j
Blanch, 2000, Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme, J. Mol. Biol., 301, 553, 10.1006/jmbi.2000.3981
Bucciantini, 2002, Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases, Nature, 416, 507, 10.1038/416507a
Carrell, 1997, Conformational disease, Lancet, 350, 134, 10.1016/S0140-6736(97)02073-4
Cho, 2009, Structural characterization of alpha-synuclein in an aggregation prone state, Protein Sci., 18, 1840, 10.1002/pro.194
Creamer, 2002, Determinants of the polyproline II helix from modeling studies, Adv. Protein Chem., 62, 263, 10.1016/S0065-3233(02)62010-8
Dedmon, 2005, Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations, J. Am. Chem. Soc., 127, 476, 10.1021/ja044834j
Delaglio, 1995, NMRPipe: a multidimensional spectral processing system based on UNIX pipes, J. Biomol. NMR, 6, 277, 10.1007/BF00197809
Dobson, 1999, Protein misfolding, evolution and disease, Trends Biochem. Sci., 24, 329, 10.1016/S0968-0004(99)01445-0
Dunker, 2008, Function and structure of inherently disordered proteins, Curr. Opin. Struct. Biol., 18, 756, 10.1016/j.sbi.2008.10.002
Dyson, 2004, Unfolded proteins and protein folding studied by NMR, Chem. Rev., 104, 3607, 10.1021/cr030403s
Dyson, 2005, Intrinsically unstructured proteins and their functions, Nat. Rev. Mol. Cell Biol., 6, 197, 10.1038/nrm1589
Eker, 2003, Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy, J. Am. Chem. Soc., 125, 8178, 10.1021/ja034625j
Eliezer, 2001, Conformational properties of alpha-synuclein in its free and lipid-associated states, J. Mol. Biol., 307, 1061, 10.1006/jmbi.2001.4538
Fink, 2005, Natively unfolded proteins, Curr. Opin. Struct. Biol., 15, 35, 10.1016/j.sbi.2005.01.002
Fisher, 2011, Constructing ensembles for intrinsically disordered proteins, Curr. Opin. Struct. Biol., 21, 426, 10.1016/j.sbi.2011.04.001
Fitzkee, 2005, The Protein Coil Library: a structural database of nonhelix, nonstrand fragments derived from the PDB, Proteins, 58, 852, 10.1002/prot.20394
Gurry, 2013, The dynamic structure of α-synuclein multimers, J. Am. Chem. Soc., 135, 3865, 10.1021/ja310518p
Jeganathan, 2006, Global hairpin folding of tau in solution, Biochemistry, 45, 2283, 10.1021/bi0521543
Jensen, 2010, Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts, J. Am. Chem. Soc., 132, 1270, 10.1021/ja909973n
Jensen, 2013, Describing intrinsically disordered proteins at atomic resolution by NMR, Curr. Opin. Struct. Biol., 23, 426, 10.1016/j.sbi.2013.02.007
Jha, 2005, Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library, Biochemistry, 44, 9691, 10.1021/bi0474822
Keiderling, 2002, Unfolded peptides and proteins studied with infrared absorption and vibrational circular dichroism spectra, Adv. Protein Chem., 62, 111, 10.1016/S0065-3233(02)62007-8
Konarev, 2006, ATSAS 2.1, a program package for small-angle scattering data analysis, J. Appl. Crystallogr., 39, 277, 10.1107/S0021889806004699
Krimm, 1974, Circular-dichroism spectrum and structure of unordered polypeptides and proteins, Isr. J. Chem., 12, 189, 10.1002/ijch.197400018
Maiti, 2004, Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein, J. Am. Chem. Soc., 126, 2399, 10.1021/ja0356176
Makowska, 2006, Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins, Proc. Natl. Acad. Sci. USA, 103, 1744, 10.1073/pnas.0510549103
Marsh, 2006, Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation, Protein Sci., 15, 2795, 10.1110/ps.062465306
Marsh, 2008, Calculation of residual dipolar couplings from disordered state ensembles using local alignment, J. Am. Chem. Soc., 130, 7804, 10.1021/ja802220c
Mästle, 1995, Conformational study of linear alternating and mixed D- and L-proline oligomers using electronic and vibrational CD and Fourier transform IR, Biopolymers, 36, 623, 10.1002/bip.360360508
McColl, 2004, Vibrational Raman optical activity characterization of poly(l-proline) II helix in alanine oligopeptides, J. Am. Chem. Soc., 126, 5076, 10.1021/ja049271q
Meier, 2008, Conformational distributions of unfolded polypeptides from novel NMR techniques, J. Chem. Phys., 128, 052204, 10.1063/1.2838167
Mittag, 2007, Atomic-level characterization of disordered protein ensembles, Curr. Opin. Struct. Biol., 17, 3, 10.1016/j.sbi.2007.01.009
Mittag, 2010, Protein dynamics and conformational disorder in molecular recognition, J. Mol. Recognit., 23, 105
Mukrasch, 2007, Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation, J. Am. Chem. Soc., 129, 5235, 10.1021/ja0690159
Mukrasch, 2007, The “jaws” of the tau-microtubule interaction, J. Biol. Chem., 282, 12230, 10.1074/jbc.M607159200
Mukrasch, 2009, Structural polymorphism of 441-residue tau at single residue resolution, PLoS Biol., 7, e34, 10.1371/journal.pbio.1000034
Mylonas, 2008, Domain conformation of tau protein studied by solution small-angle X-ray scattering, Biochemistry, 47, 10345, 10.1021/bi800900d
Narayanan, 2010, Automatic assignment of the intrinsically disordered protein Tau with 441-residues, J. Am. Chem. Soc., 132, 11906, 10.1021/ja105657f
Nath, 2012, The conformational ensembles of α-synuclein and tau: combining single-molecule FRET and simulations, Biophys. J., 103, 1940, 10.1016/j.bpj.2012.09.032
Nodet, 2009, Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings, J. Am. Chem. Soc., 131, 17908, 10.1021/ja9069024
Ozenne, 2012, Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables, Bioinformatics, 28, 1463, 10.1093/bioinformatics/bts172
Ozenne, 2012, Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution, J. Am. Chem. Soc., 134, 15138, 10.1021/ja306905s
Pappu, 2002, A simple model for polyproline II structure in unfolded states of alanine-based peptides, Protein Sci., 11, 2437, 10.1110/ps.0217402
Preuss, 1997, The ‘jaws’ model of tau-microtubule interaction examined in CHO cells, J. Cell Sci., 110, 789, 10.1242/jcs.110.6.789
Rasia, 2011, Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins, J. Biomol. NMR, 51, 369, 10.1007/s10858-011-9567-4
Rückert, 2000, Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments, J. Am. Chem. Soc., 122, 7793, 10.1021/ja001068h
Salmon, 2010, NMR characterization of long-range order in intrinsically disordered proteins, J. Am. Chem. Soc., 132, 8407, 10.1021/ja101645g
Schneider, 2012, Towards a robust description of intrinsic protein disorder using nuclear magnetic resonance spectroscopy, Mol. Biosyst., 8, 58, 10.1039/C1MB05291H
Schweers, 1994, Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure, J. Biol. Chem., 269, 24290, 10.1016/S0021-9258(19)51080-8
Schweitzer-Stenner, 2013, Different degrees of disorder in long disordered peptides can be discriminated by vibrational spectroscopy, J. Phys. Chem. B, 117, 6927, 10.1021/jp402869k
Sgourakis, 2011, Atomic-level characterization of the ensemble of the Aβ(1-42) monomer in water using unbiased molecular dynamics simulations and spectral algorithms, J. Mol. Biol., 405, 570, 10.1016/j.jmb.2010.10.015
Shen, 2007, Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology, J. Biomol. NMR, 38, 289, 10.1007/s10858-007-9166-6
Shi, 2002, Polyproline II structure in a sequence of seven alanine residues, Proc. Natl. Acad. Sci. USA, 99, 9190, 10.1073/pnas.112193999
Shi, 2006, Conformation of the backbone in unfolded proteins, Chem. Rev., 106, 1877, 10.1021/cr040433a
Sibille, 2012, Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS, Biochem. Soc. Trans., 40, 955, 10.1042/BST20120149
Smith, 1996, Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations, J. Mol. Biol., 255, 494, 10.1006/jmbi.1996.0041
Svergun, 1995, CRYSOL - A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Crystallogr., 28, 768, 10.1107/S0021889895007047
Swindells, 1995, Intrinsic phi, psi propensities of amino acids, derived from the coil regions of known structures, Nat. Struct. Biol., 2, 596, 10.1038/nsb0795-596
Syme, 2002, A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behaviour of natively unfolded proteins, Eur. J. Biochem., 269, 148, 10.1046/j.0014-2956.2001.02633.x
Tiffany, 1969, Circular dichroism of random polypeptide chain, Biopolymers, 8, 347, 10.1002/bip.1969.360080306
Tompa, 2002, Intrinsically unstructured proteins, Trends Biochem. Sci., 27, 527, 10.1016/S0968-0004(02)02169-2
Tompa, 2011, Unstructural biology coming of age, Curr. Opin. Struct. Biol., 21, 419, 10.1016/j.sbi.2011.03.012
Tompa, 2008, Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions, Trends Biochem. Sci., 33, 2, 10.1016/j.tibs.2007.10.003
Ullman, 2011, Explaining the structural plasticity of α-synuclein, J. Am. Chem. Soc., 133, 19536, 10.1021/ja208657z
Uversky, 2002, Natively unfolded proteins: a point where biology waits for physics, Protein Sci., 11, 739, 10.1110/ps.4210102
Uversky, 2004, Conformational constraints for amyloid fibrillation: the importance of being unfolded, Biochim. Biophys. Acta (BBA)-Proteins Proteomics, 1698, 131, 10.1016/j.bbapap.2003.12.008
Varadi, 2013, pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins, Nucleic Acids Res.
Wang, 2011, A soluble α-synuclein construct forms a dynamic tetramer, Proc. Natl. Acad. Sci. USA, 108, 17797, 10.1073/pnas.1113260108
Weinreb, 1996, NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded, Biochemistry, 35, 13709, 10.1021/bi961799n
Wells, 2008, Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain, Proc. Natl. Acad. Sci. USA, 105, 5762, 10.1073/pnas.0801353105
Woody, 2009, Circular dichroism spectrum of peptides in the poly(Pro)II conformation, J. Am. Chem. Soc., 131, 8234, 10.1021/ja901218m
Wu, 2008, Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation, J. Mol. Biol., 378, 1104, 10.1016/j.jmb.2008.03.017
Zagrovic, 2005, Unusual compactness of a polyproline type II structure, Proc. Natl. Acad. Sci. USA, 102, 11698, 10.1073/pnas.0409693102
Zhang, 2003, RefDB: a database of uniformly referenced protein chemical shifts, J. Biomol. NMR, 25, 173, 10.1023/A:1022836027055