Prediction of the landslide susceptibility: Which algorithm, which precision?

CATENA - Tập 162 - Trang 177-192 - 2018
Hamid Reza Pourghasemi1, Omid Rahmati2
1Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
2Department of Watershed Management, Faculty of Agriculture and Natural Resources, Lorestan University, Lorestan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aguirre-Gutiérrez, 2013, Fit-for-purpose: species distribution model performance depends on evaluation criteria—Dutch hoverflies as a case study, PLoS One, 8, 10.1371/journal.pone.0063708

Alkhasawneh, 2014, Determination of importance for comprehensive topographic factors on landslide hazard mapping using artificial neural network, Environ. Earth Sci., 72, 787, 10.1007/s12665-013-3003-x

An, 2016, Development of time-variant landslide-prediction software considering three-dimensional subsurface unsaturated flow, Environ. Model. Softw., 85, 172, 10.1016/j.envsoft.2016.08.009

Arnone, 2016, Effect of raster resolution and polygon-conversion algorithm on landslide susceptibility mapping, Environ. Model. Softw., 84, 467, 10.1016/j.envsoft.2016.07.016

Atkinson, 1998, Generalized linear modeling of susceptibility to landsliding in the central Apennines, Italy, Comput. Geosci., 24, 373, 10.1016/S0098-3004(97)00117-9

Ayalew, 2004, Landslide susceptibility mapping using GIS based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan, Landslides, 1, 73, 10.1007/s10346-003-0006-9

Begueria, 2006, Validation and evaluation of predictive models in hazard assessment and risk management, Nat. Hazards, 37, 315, 10.1007/s11069-005-5182-6

Betts, 2017, Development of a landslide component for a sediment budget model, Environ. Model. Softw., 92, 28, 10.1016/j.envsoft.2017.02.003

Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324

Brenning, 2005, Spatial prediction models for landslide hazards: review, comparison and evaluation, Nat. Hazards Earth Syst. Sci., 5, 853, 10.5194/nhess-5-853-2005

Brenning, 2008, Statistical geocomputing combining R and SAGA: the example of landslide susceptibility analysis with generalized additive models, 23

Briand, 2004, Using multiple adaptive regression splines to support decision making in code inspections, J. Syst. Softw., 73, 205, 10.1016/j.jss.2004.01.015

Briman, 2015, 29

Broséus, 2011, Multi-class differentiation of cannabis seedlings in a forensic context, Chemom. Intell. Lab. Syst., 107, 343, 10.1016/j.chemolab.2011.05.004

Bucci, 2016, Landslide distribution and size in response to Quaternary fault activity: the Peloritani Range, NE Sicily, Italy, Earth Surf. Proc. Land, 41, 711, 10.1002/esp.3898

Chacon, 2006, Engineering geology maps: landslides and geographical information systems, Bull. Eng. Geol. Environ., 65, 341, 10.1007/s10064-006-0064-z

Choobbasti, 2009, Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran), Arab. J. Geosci., 2, 311, 10.1007/s12517-009-0035-3

Chung, 2003, Validation of spatial prediction models for landslide hazard mapping, Nat. Hazards, 30, 451, 10.1023/B:NHAZ.0000007172.62651.2b

Clarke, 2009

Conoscenti, 2015, Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: a case of the Belice River basin (western Sicily, Italy), Geomorphology, 242, 49, 10.1016/j.geomorph.2014.09.020

Corominas, 2014, Recommendations for the quantitative analysis of landslide risk, Bull. Eng. Geol. Environ., 73, 209

Cortez, 2015, 59

Costanzo, 2012, Factors selection in landslide susceptibility modelling on large scale following the GIS matrix method: application to the River Beiro Basin (Spain), Nat. Hazards Earth Syst. Sci., 12, 327, 10.5194/nhess-12-327-2012

Dai, 2002, Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213, 10.1016/S0169-555X(01)00087-3

Das, 2011, Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India, Landslides, 8, 293, 10.1007/s10346-011-0257-9

De Sy, 2013, Landslide model performance in a high resolution small-scale landscape, Geomorphology, 190, 73, 10.1016/j.geomorph.2013.02.012

Dickson, 2016, Identifying the controls on coastal cliff landslides using machine-learning approaches, Environ. Model. Softw., 76, 117, 10.1016/j.envsoft.2015.10.029

Elith, 2008, A working guide to boosted regression trees, J. Anim. Ecol., 77, 802, 10.1111/j.1365-2656.2008.01390.x

Ercanoglu, 2004, Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey), Eng. Geol., 75, 229, 10.1016/j.enggeo.2004.06.001

Evans, 1979

Fausett, 1994

Feizizadeh, 2014, GIS-based ordered weighted averaging and Dempster–Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran, Int. J. Digital Earth, 7, 688, 10.1080/17538947.2012.749950

Felicísimo, 2013, Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study, Landslides, 10, 175, 10.1007/s10346-012-0320-1

Ferentinou, 2013, Mapping mass movement susceptibility across Greece with GIS, ANN and statistical methods, Landslide Sci. Practice, 1, 321, 10.1007/978-3-642-31325-7_42

Filippi, 2006, Fuzzy learning vector quantization for hyperspectral coastal vegetation classification, Remote Sens. Environ., 100, 512, 10.1016/j.rse.2005.11.007

Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Statist., 29, 1189, 10.1214/aos/1013203451

Genuer, 2010, Variable selection using random forests, Pattern Recogn. Lett., 31, 2225, 10.1016/j.patrec.2010.03.014

Goetz, 2011, Integrating physical and empirical landslide susceptibility models using generalized additive models, Geomorphology, 129, 376, 10.1016/j.geomorph.2011.03.001

Goetz, 2015, Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling, Comput. Geosci., 81, 1, 10.1016/j.cageo.2015.04.007

Gomes, 2005, Evaluation of landslide susceptibility of Sete Cidades volcano (S. Miguel Island, Azores), Nat. Hazards Earth Syst. Sci., 5, 251, 10.5194/nhess-5-251-2005

Gómez-Gutiérrez, 2009, Modelling the occurrence of gullies in rangelands of southwest Spain, Earth Surf. Process. Landf., 34, 1894, 10.1002/esp.1881

Gómez-Gutiérrez, 2009, Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies, Ecol. Model., 220, 3630, 10.1016/j.ecolmodel.2009.06.020

Gómez-Gutiérrez, 2015, Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations, Nat. Hazards, 79, 291, 10.1007/s11069-015-1703-0

Guzzetti, 2006, Estimating the quality of landslide susceptibility models, Geomorphology, 81, 166, 10.1016/j.geomorph.2006.04.007

Hadji, 2013, Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria, Quat. Int., 302, 224, 10.1016/j.quaint.2012.11.027

Haigh, 2012, Landslide disasters: seeking causes – a case study from Uttarakhand, India, 218

Hastie, 1990

Hastie, 2009

Henriques, 2015, The role of the lithological setting on the landslide pattern and distribution, Eng. Geol., 189, 17, 10.1016/j.enggeo.2015.01.025

Hijmans, 2016, 67

Hong, 2015, Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines, Catena, 133, 266, 10.1016/j.catena.2015.05.019

Hong, 2016, GIS-based landslide spatial modeling in Ganzhou City, China, Arab. J. Geosci., 9, 1, 10.1007/s12517-015-2094-y

Hong, 2016, Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models, Geomorphology, 259, 105, 10.1016/j.geomorph.2016.02.012

Iranian Department of Water Resource Management (IDWRM), 2014

Iranian Statistical Institute (ISI), 2016

Kanungo, 2006, A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas, Eng. Geol., 85, 347, 10.1016/j.enggeo.2006.03.004

Karatzoglou, 2016, 108

Kavzoglu, 2009, A kernel functions analysis for support vector machines for land cover classification, Int. J. Appl. Earth Obs. Geoinf., 11, 352, 10.1016/j.jag.2009.06.002

Kavzoglu, 2014, An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district, Nat. Hazards, 76, 471, 10.1007/s11069-014-1506-8

Kavzoglu, 2014, Landslide susceptibility mapping using GISbased multi-criteria decision analysis, support vector machines, and logistic regression, Landslides, 11, 425, 10.1007/s10346-013-0391-7

Keesstra, 2015

Keesstra, 2016, The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, Soil, 2, 111, 10.5194/soil-2-111-2016

Khoshravan, 1998

Khoshravan, 2007, Beach sediments, morphodynamics, and risk assessment, Caspian Sea coast, Iran. Quaternary Int., 167–168, 35, 10.1016/j.quaint.2007.02.014

Kohonen, 1995, 175

Kornejady, 2017, Landslide susceptibility assessment using maximum entropy model with two different data sampling methods, Catena, 152, 144, 10.1016/j.catena.2017.01.010

Kornejady, 2017, Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND, Geocarto Int., 10.1080/10106049.2017.1334832

Kuo, 2004, Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan, Water Res., 38, 148, 10.1016/j.watres.2003.09.026

Leathwick, 2005, Using multivariate adaptive regression splines to predict the distributions of New Zealand‘s freshwater diadromous fish, Freshw. Biol., 50, 2034, 10.1111/j.1365-2427.2005.01448.x

Lee, 2002, Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea, Geomorphology, 46, 149, 10.1016/S0169-555X(02)00057-0

Lee, 2004, Determination and application of the weights for landslide susceptibility mapping using an artificial neural network, Eng. Geol., 71, 289, 10.1016/S0013-7952(03)00142-X

Lehmann, 2002, GRASP: generalized regression analysis and spatial prediction, Ecol. Model., 157, 189, 10.1016/S0304-3800(02)00195-3

Li, 2009, Support vector machines and its applications in chemistry, Chemom. Intell. Lab. Syst., 95, 188, 10.1016/j.chemolab.2008.10.007

Liaw, 2002, Classification and regression by random forest, R News, 2, 18

Lin, 2010, Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan, Hydrol. Earth Syst. Sci. Discuss., 7, 3423, 10.5194/hessd-7-3423-2010

Magliulo, 2008, Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy, Nat. Hazards, 47, 411, 10.1007/s11069-008-9230-x

Marjanović, 2011, Landslide susceptibility assessment using SVM machine learning algorithm, Eng. Geol., 123, 225, 10.1016/j.enggeo.2011.09.006

Mason, 2002, Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation, Q. J. R. Meteorol. Soc., 128, 2145, 10.1256/003590002320603584

Mathew, 2009, Landslide susceptibility mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression and receiver operating characteristic curve method, Landslides, 6, 17, 10.1007/s10346-008-0138-z

McCullagh, 1989

Mertens, 2016, The direct impact of landslides on household income in tropical regions: a case study from the Rwenzori Mountains in Uganda, Sci. Total Environ., 550, 1032, 10.1016/j.scitotenv.2016.01.171

Micheletti, 2011, Landslide susceptibility mapping using adaptive support vector machines and feature selection

Micheletti, 2014, Machine learning feature selection methods for landslide susceptibility mapping, Math. Geosci., 46, 33, 10.1007/s11004-013-9511-0

Milborrow, 2011

Miller, 2013, Assessing landslide susceptibility by incorporating the surface cover index as a measurement of vegetative cover, Land Degrad. Dev., 24, 205, 10.1002/ldr.1115

Mohammady, 2012, Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-ofevidence models, J. Asian Earth Sci., 61, 221, 10.1016/j.jseaes.2012.10.005

Mondino, 2009, A neural network method for analysis of hyperspectral imagery with application to the Cassas landslide (Susa Valley, NW-Italy), Geomorphology, 110, 20, 10.1016/j.geomorph.2008.12.023

Montanarella, 2003, The EU thematic strategy on soil protection. In land degradation in Central and Eastern Europe

Moore, 1986, Physical basis of length–slope factor in the Universal Soil Loss Equation, Soil Sci. Soc. Am. J., 50, 1294, 10.2136/sssaj1986.03615995005000050042x

Murillo-García, 2015, Landslide susceptibility analysis and mapping using statistical multivariate techniques: Pahuatlán, Puebla, Mexico, 179, 10.1007/978-3-319-11053-0_16

Naghibi, 2016, GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran, Environ. Monit. Assess., 10.1007/s10661-015-5049-6

Nasiri Aghdam, 2016, Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran), Environ. Earth Sci., 75, 1

Nefeslioglu, 2008, Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey), Geomorphology, 94, 401, 10.1016/j.geomorph.2006.10.036

Nefeslioglu, 2008, An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps, Eng. Geol., 97, 171, 10.1016/j.enggeo.2008.01.004

Nefeslioglu, 2010, Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey, Math. Probl. Eng., 10.1155/2010/901095

Neuhäuser, 2012, GIS-based assessment of landslide susceptibility on the base of the Weights-of-Evidence model, Landslides, 9, 511, 10.1007/s10346-011-0305-5

Oh, 2011, Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area, Comput. Geosci., 37, 1264, 10.1016/j.cageo.2010.10.012

Papathoma-Köhle, 2015, Loss estimation for landslides in mountain areas–an integrated toolbox for vulnerability assessment and damage documentation, Environ. Model. Softw., 63, 156, 10.1016/j.envsoft.2014.10.003

Park, 2015, Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets, Environ. Earth Sci., 73, 937, 10.1007/s12665-014-3442-z

Patel, 2016, Computer vision-based limestone rock-type classification using probabilistic neural network, Geosci. Front., 7, 53, 10.1016/j.gsf.2014.10.005

Pavel, 2008, Replication of a terrain stability mapping using an artificial neural network, Geomorphology, 97, 356, 10.1016/j.geomorph.2007.08.012

Pavel, 2011, An analysis of landslide susceptibility zonation using a subjective geomorphic mapping and existing landslides, Comput. Geosci., 37, 554, 10.1016/j.cageo.2010.10.006

Pham, 2016, A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India), Environ. Model. Softw., 84, 240, 10.1016/j.envsoft.2016.07.005

Poudyal, 2010, Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya, Environ. Earth Sci., 61, 1049, 10.1007/s12665-009-0426-5

Pourghasemi, 2016, Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran, Environ. Earth Sci., 75, 1, 10.1007/s12665-015-4950-1

Pourghasemi, 2013, Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran, J. Earth Syst. Sci., 122, 349, 10.1007/s12040-013-0282-2

Pradhan, 2013, A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS, Comput. Geosci., 51, 350, 10.1016/j.cageo.2012.08.023

Pradhan, 2010, Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling, Environ. Model. Softw., 25, 747, 10.1016/j.envsoft.2009.10.016

Pradhan, 2010, Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia), IEEE Trans. Geosci. Remote Sens., 48, 4164, 10.1109/TGRS.2010.2050328

R Development Core Team, 2015

Rahmati, 2016, Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison, Nat. Hazards, 82, 1231, 10.1007/s11069-016-2239-7

Rahmati, 2017, Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework, Sci. Total Environ., 579, 913, 10.1016/j.scitotenv.2016.10.176

Ridgeway, 2007, 12

Rodionov, 1994

Romer, 2016, Shallow landslide susceptibility assessment in a semiarid environment, — a quaternary catchment of KwaZulu-Natal, South Africa, Eng. Geol., 201, 29, 10.1016/j.enggeo.2015.12.013

Rossi, 2010, Optimal landslide susceptibility zonation based on multiple forecasts, Geomorphology, 114, 129, 10.1016/j.geomorph.2009.06.020

Saito, 2009, Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan, Geomorphology, 109, 108, 10.1016/j.geomorph.2009.02.026

Samadi, 2014, Assessment of M5 model tree and classification and regression trees for prediction of scour depth below free overfall spillways, Neural Comput. & Applic., 24, 357, 10.1007/s00521-012-1230-9

Schapire, 2003, The boosting approach to maching learning – an overview, 1

Schilirò, 2016, Prediction of shallow landslide occurrence: validation of a physically-based approach through a real case study, Sci. Total Environ., 569–570, 134, 10.1016/j.scitotenv.2016.06.124

Segal, 2004

Sezer, 2011, Manifestation of an adaptive neurofuzzy model on landslide susceptibility mapping: Klang valley, Malaysia, Expert Syst. Appl., 38, 8208, 10.1016/j.eswa.2010.12.167

Shafiei, 2010, Forest fire effects in beech dominated mountain forest of Iran, For. Ecol. Manag., 259, 2191, 10.1016/j.foreco.2010.02.025

Soria, 2011, A non-parametricversion of the naive Bayes classifier, Knowl.-Based Syst., 24, 775, 10.1016/j.knosys.2011.02.014

Tayebi, 2015, Sub pixel mapping of alteration minerals using SOM neural network model and hyperion data, Earth Sci. Inf., 8, 279, 10.1007/s12145-014-0194-y

Thai Pham, 2015, Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods, Theor. Appl. Climatol.

Thanh, 2014, Slope stability analysis using a physically based model: a case study from a Luoi district in Thua Thien-Hue province, Vietnam, Landslides, 11l, 897, 10.1007/s10346-013-0437-x

Tien Bui, 2012, Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS, Comput. Geosci., 45, 199, 10.1016/j.cageo.2011.10.031

Tien Bui, 2016, Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree, Landslides, 13, 361, 10.1007/s10346-015-0557-6

Trigila, 2015, Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy), Geomorphology, 249, 119, 10.1016/j.geomorph.2015.06.001

Tsangaratos, 2016, Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size, Catena, 145, 164, 10.1016/j.catena.2016.06.004

Tseng, 2015, Landslide susceptibility analysis by means of event-based multi-temporal landslide inventories, Nat. Hazard Earth Sys., 3, 1137, 10.5194/nhessd-3-1137-2015

Vahidnia, 2010, A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping, Comput. Geosci., 36, 1101, 10.1016/j.cageo.2010.04.004

Van Westen, 1996, An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia), Earth Surf. Process. Landf., 21, 853, 10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-C

Vapnik, 2000

Vorpah, 2012, How can statistical models help to determine driving factors of landslides?, Ecol. Model., 239, 27, 10.1016/j.ecolmodel.2011.12.007

Wang, 2016, Occurrence probability assessment of earthquake-triggered landslides with Newmark displacement values and logistic regression: the Wenchuan earthquake, China, Geomorphology, 258, 108, 10.1016/j.geomorph.2016.01.004

Water Resources Company of Mazandaran (WRCM)

Weng, 2011, Evaluating triggering and causative factors of landslides in Lawnon River Basin, Taiwan, Eng. Geol., 123, 72, 10.1016/j.enggeo.2011.07.001

Williams, 2014, Analyzing coastal ocean model outputs using competitive learning pattern recognition techniques, Environ. Model. Softw., 57, 165, 10.1016/j.envsoft.2014.03.001

Wu, 2008, Top 10 algorithms in data mining, Knowl. Inf. Syst., 14, 1, 10.1007/s10115-007-0114-2

Wu, 2014, Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China, Environ. Earth Sci., 71, 4725, 10.1007/s12665-013-2863-4

Yao, 2008, Landslide susceptibility mapping based on Support Vector Machine: a case study on natural slopes of Hong Kong, China, Geomorphology, 101, 572, 10.1016/j.geomorph.2008.02.011

Yesilnacar, 2005, Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Eng. Geol., 79, 251, 10.1016/j.enggeo.2005.02.002

Yilmaz, 2010, The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability (CP) and artificial neural network (ANN), Environ. Earth Sci., 60, 505, 10.1007/s12665-009-0191-5

Youssef, 2016, Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia, Landslides, 13, 839, 10.1007/s10346-015-0614-1

Zare, 2013, Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms, Arab. J. Geosci., 6, 2873, 10.1007/s12517-012-0610-x

Zhang, 2012, Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery, Remote Sens. Environ., 124, 310, 10.1016/j.rse.2012.05.015