Prediction of the Thickness of a Thin Paint Film by Applying a Modified Partial-Least-Squares-1 Method to Data Obtained in Terahertz Reflectometry
Tóm tắt
We applied a multivariate analysis method to time-domain (TD) data obtained in terahertz (THz) reflectometry for predicting the thickness of a single-layered paint film deposited on a metal substrate. For prediction purposes, we built a calibration model from TD-THz waveforms obtained from films of different thicknesses but the same kind. Because each TD-THz wave is approximate by the superposition of two echo pulses (one is reflected from the air–film boundary and the other from the film–substrate boundary), a difference in thickness gives a relative peak shift in time in the two echo pulses. Then, we predicted unknown thicknesses of the paint films by using the calibration model. Although any multivariate analysis method can be used, we proposed employing a modified partial-least-squares-1 (PLS1) method because it gives a superior calibration model in principle. The prediction procedure worked well for a moderately thin film (typically, several to several tens of micrometers) rather than a thicker one.
Tài liệu tham khảo
D. M. Mittleman, Sensing with THz radiation, 1st edn. (Springer, 2003).
M. Tonouchi, Nature 1, 97 (2007).
P. U. Jepsen, D. G. Cooke and M. Koch, Laser Photon. Rev. 5, 124 (2011)
E. P. Parrott, S. M. Sy, T. Bllu, V. P. Wallace and E. Pickwell-Macpherson, J. Biomed. Opt. 16, 106010 (2011).
D. M. Mittleman, S. Hunsche, L. Boivin and M. C. Nuss, Opt. Lett. 22, 904 (1997).
T. Yasui, T. Yasuda, K. Sawanaka and T. Araki, Appl. Opt. 44, 6849 (2005).
T. Yasuda, T. Yasui, T. Araki and E. Abraham, Opt. Comm. 267, 128 (2006).
D. J. Cook, S. J. Sharpe, S. Lee and M. G. Allen, "Terahertz time domain measurements of marine paint thickness," in Optical Terahertz Science and Technology, 2007 OSA Technical Digest Series (Optical Society of America, 2007), paper TuB5.
Y. Izutani, M. Akagi, and K. Kitagishi, "Measurements of paint thickness of automobiles by using THz time-domain spectroscopy," in Proceedings of 37th International Conference on Infrared, Millimeter, and Terahertz Waves, Fri-A-3-4.
J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu and K. Fukunaga, IEEE Trans. Terahertz Sci. Tech. 1, 220 (2011).
J. Takayanagi, H. Jinno, S. Ichino, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa and K. Kawase, Opt. Express 17, 7533 (2009).
T. Yasuda, T. Iwata, T. Araki and T. Yasui, Appl. Opt. 46, 7518 (2007).
M. Schwerdtfeger E. Castro-Camus, K. Krügener, W. Viöl, and M. Koch, Appl. Opt. 52, 375 (2013).
P. Geladi and B. R. Kowalski, Anal. Chim. Acta. 185, 1 (1986).
D. M. Haaland and E. V. Thomas, Anal. Chem. 60, 1193 (1988).
J. Koshoubu, T. Iwata and S. Minami, Appl. Spectrosc. 54, 148 (2000).
J. Koshoubu, T. Iwata and S. Minami, Anal. Sci. 17, 319–322 (2001).
V. Centner, D. L. Massart, O. E. de Noord, S. de Jong, B. M. Vandeginste and C. Sterna, Anal. Chem. 68, 3851 (1996).
J. Ferre and F. X. Rius, Anal. Chem. 68, 1565 (1996).
P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier detection, 1st edn. (John Wiley & Sons, New York, 1987).