Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures
Tóm tắt
Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.
Tài liệu tham khảo
Gould EA, Solomon T: Pathogenic flaviviruses. Lancet 2008, 371(9611):500–509. 10.1016/S0140-6736(08)60238-X
Ray D, Shi PY: Recent advances in flavivirus antiviral drug discovery and vaccine development. Recent Pat Antiinfect Drug Discov 2006, 1(1):45–55. 10.2174/157489106775244055
Perera R, Khaliq M, Kuhn RJ: Closing the door on flaviviruses: entry as a target for antiviral drug design. Antiviral Res 2008, 80(1):11–22. 10.1016/j.antiviral.2008.05.004
Mukhopadhyay S, Kuhn RJ, Rossmann MG: A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 2005, 3(1):13–22. 10.1038/nrmicro1067
Modis Y, Ogata S, Clements D, Harrison SC: Structure of the dengue virus envelope protein after membrane fusion. Nature 2004, 427(6972):313–319. 10.1038/nature02165
Perera R, Kuhn RJ: Structural proteomics of dengue virus. Curr Opin Microbiol 2008, 11(4):369–377. 10.1016/j.mib.2008.06.004
Li L, Lok SM, Yu IM, Zhang Y, Kuhn RJ, Chen J, Rossmann MG: The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 2008, 319(5871):1830–1834. 10.1126/science.1153263
Yu IM, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J: Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 2008, 319(5871):1834–1837. 10.1126/science.1153264
Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ: Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 2003, 10(11):907–912. 10.1038/nsb990
Gadkari RA, Varughese D, Srinivasan N: Recognition of interaction interface residues in low-resolution structures of protein assemblies solely from the positions of C(alpha) atoms. PLoS ONE 2009, 4(2):e4476.. 10.1371/journal.pone.0004476
Sampath A, Padmanabhan R: Molecular targets for flavivirus drug discovery. Antiviral Res 2009, 81(1):6–15. 10.1016/j.antiviral.2008.08.004
Pokidysheva E, Zhang Y, Battisti AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhn RJ, Rossmann MG: Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 2006, 124(3):485–493. 10.1016/j.cell.2005.11.042
Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG: Conformational changes of the flavivirus E glycoprotein. Structure 2004, 12(9):1607–1618. 10.1016/j.str.2004.06.019
Lok SM, Kostyuchenko V, Nybakken GE, Holdaway HA, Battisti AJ, Sukupolvi-Petty S, Sedlak D, Fremont DH, Chipman PR, Roehrig JT, et al.: Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. Nat Struct Mol Biol 2008, 15(3):312–317. 10.1038/nsmb.1382
Gould CM, Kannan N, Taylor SS, Newton AC: The Chaperones Hsp90 and Cdc37 Mediate the Maturation and Stabilization of Protein Kinase C through a Conserved PXXP Motif in the C-terminal Tail. J Biol Chem 2009, 284(8):4921–4935. 10.1074/jbc.M808436200
Kaneko T, Li L, Li SS: The SH3 domain--a family of versatile peptide-and protein-recognition module. Front Biosci 2008, 13: 4938–4952. 10.2741/3053
Saksela K, Cheng G, Baltimore D: Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. Embo J 1995, 14(3):484–491.
Ravi Chandra B, Gowthaman R, Raj Akhouri R, Gupta D, Sharma A: Distribution of proline-rich (PxxP) motifs in distinct proteomes: functional and therapeutic implications for malaria and tuberculosis. Protein Eng Des Sel 2004, 17(2):175–182. 10.1093/protein/gzh024
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28(1):235–242. 10.1093/nar/28.1.235
Hubbard SJ, Thronton JM: NACCESS, Department of Biochemistry and Molecular Biology, University College, London. 1993.
Rekha N, Machado SM, Narayanan C, Krupa A, Srinivasan N: Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: Implications for metabolic and signaling pathways. Proteins 2005, 58(2):339–353. 10.1002/prot.20319
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25(17):3389–3402. 10.1093/nar/25.17.3389
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31(13):3497–3500. 10.1093/nar/gkg500
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596–1599. 10.1093/molbev/msm092
Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008, 9(4):299–306. 10.1093/bib/bbn017
Holm L, Sander C: Protein structure comparison by alignment of distance matrices. J Mol Biol 1993, 233(1):123–138. 10.1006/jmbi.1993.1489
Holm L, Park J: DaliLite workbench for protein structure comparison. Bioinformatics 2000, 16(6):566–567. 10.1093/bioinformatics/16.6.566