Prediction of glass transition temperatures of polyquinolines and polyquinoxalines

Polymer Science, Series A - Tập 54 - Trang 48-60 - 2012
Yanli Liu1, Zhengde Tan1, Shihua Zhang2,3
1Department of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan, China
2Network Information Center, Hunan Institute of Engineering, Xiangtan, Hunan, China
3Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, China

Tóm tắt

Two molecular descriptors calculated directly from repeating units were used to predict the glass transition temperature (T g) values of polyquinolines and polyquinoxalines. These polymers were randomly divided into a training set (44 polymers) and a test set (19 polymers). By applying stepwise multiple linear regression analysis, the training set was used to construct a quantitative structure-property relationship model, which was evaluated externally with the test set. The descriptors used have definite physical meaning. Root mean square errors for the training set and the test set were 15.90 K and 17.33 K respectively, which were accurate and acceptable in comparison with existing models. The results indicate that chosen model containing only two molecular descriptors can be applied to predict T g of polyquinolines and polyquinoxalines, although these polymers have complicated structures.

Tài liệu tham khảo

S. Krause, J. J. Gormley, N. Roman, et al., J. Polym. Sci., Part A-1 3, 3573 (1965). X. L. Yu, W. H. Yu, and X. Y. Wang, J. Appl. Polym. Sci. 115, 3721 (2010). J. Schut, D. Bolikal, I. J. Khan, et al., Polymer 48, 6115 (2007). M. P. Stevens, Polymer Chemistry: An Introduction (Oxford Univ. Press, New York, 1999). J. Bicerano, Prediction of Polymers Properties (Marcel Dekker, New York, 1996). X. L. Yu, B. Yi, X. Y. Wang, and Z. M. Xie, Chem. Phys. 332, 115 (2007). A. R. Katrizky, P. Rachwal, K. W. Law, M. Karelson, and V. S. Lobanov, J. Chem. Inf. Comput. Sci. 36, 879 (1996). A. R. Katritzky, S. Sild, V. Lobanov, and M. Karlson, J. Chem. Inf. Comput. Sci. 38, 300 (1998). B. E. Mattioni and P. C. Jurs, J. Chem. Inf. Comput. Sci. 42, 232 (2002). A. A. Askadskii, Physical Properties of Polymers, Prediction and Control (Gordon and Breach, Amsterdam, 1996). A. A. Askadskii, Computational Materials Science of Polymers (Cambridge International Science, Cambridge, 2003). D. W. Van Krevelen, Properties of Polymers. Their Estimation and Correlation with Chemical Structure (Elsevier, Amsterdam, 1990). V. P. Prialko, in Handbook of Polymer Physical Chemistry (China Petrochemical, Beijing, 1995). R. Todeschini, A. Consonni, and E. Marengo, J. Chemometr. 8, 263 (1994). R. Todeschini, M. Lasagni, A. Mauri, and M. Pavan, DRAGON-Software for the Calculation of Molecular Descriptors, Revision 5.4 for Windows (Talete srl, Milan, 2006). M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision B.05 (Gaussian, Pittsburgh, 2003). X. L. Yu, W. H. Yu, B. Yi, and X. Y. Wang, Chem. Pap. 63, 432 (2009). A. Tropsha, J. Mol. Graph. Model. 20, 269 (2002). A. Tropsha, P. Gramatica, and V. K. Gombar, QSAR Comb. Sci. 22, 69 (2003). X. L. Yu, B. Yi, W. H. Yu, and X. Y. Wang, Chem. Pap. 62, 623 (2008). X. L. Yu, X. Y. Wang, X. B. Li, J. W. Gao, and H. L. Wang, Macromol. Theory Simul. 15, 94 (2006). J. Ning,J. Mater. Sci. 44, 3156 (2009).