Prediction of fluid responsiveness in mechanically ventilated patients in surgical intensive care unit by pleth variability index and inferior vena cava diameter

Ain-Shams Journal of Anesthesiology - Tập 12 - Trang 1-7 - 2020
Diaaeldin Badr Metwally Kotb Aboelnile1, Mohamed Ismail Abdelfattah Elseidy1, Yasir Ahmed Elbasiony Mohamed Kenawey2, Ibrahim Mohammed Alsayed Ahmed Elsherif1
1Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
2Department of Anesthesiology, Intensive Care, and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt

Tóm tắt

Patients may have signs of hypovolemia, but fluid administration is not always beneficial. We are in need of bedside devices and techniques, which can predict fluid responsiveness effectively and safely. This study is aiming to compare the effectiveness and reliability of the pleth variability index (PVI) and IVC distensibility index (dIVC) as predictors of fluid responsiveness by simultaneous recordings in all sedated mechanically ventilated patients in the surgical intensive care unit (ICU). We used the passive leg raising test (PLR) as a harmless reversible technique for fluid challenge, and patients were considered responders if the cardiac index (CI) measured by transthoracic echocardiography (TTE) increased ≥ 15% after passive leg raising test (PLR). This observational cross-sectional study was performed randomly on 88 intubated ventilated sedated patients. Compared with CI measured by transthoracic echocardiography, the dIVC provided 79.17% sensitivity and 80% specificity at a threshold value of > 19.42% for fluid responsiveness prediction and was statistically significant (P < .0001), with an area under the curve (AUC) of 0.886 (0.801–0.944), while PVI at a threshold value of > 14% provided 93.75% sensitivity and 87.5% specificity and was statistically significant (P < .0001), with an AUC of 0.969 (0.889–0.988). PVI and dIVC are effective non-invasive bedside methods for the assessment of fluid responsiveness in ICU for intubated ventilated sedated patients with sinus rhythm, but PVI has the advantage of being continuous, operator-independent, and more reliable than dIVC.

Tài liệu tham khảo

Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, Jardin F, Vieillard-Baron A (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Medicine 30(9):1740–1746 Bendjelid K, Romand JA (2012) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care, In Applied Physiology in Intensive Care Medicine 2 (pp. 3-11). Springer, Berlin, Heidelberg Broch O, Bein B, Gruenewald M, Höcker J, Schöttler J, Meybohm P, Renner J (2011) Accuracy of the pleth variability index to predict fluid responsiveness depends on the perfusion index. Acta Anaesthesiologica Scandinavica 55(6):686–693 Cannesson M, De Backer D, Hofer CK (2011) Using arterial pressure waveform analysis for the assessment of fluid responsiveness. Expert Review of Medical Devices 8(5):635–646 Charbonneau H, Riu B, Faron M, Mari A, Kurrek MM, Ruiz J et al (2014) Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters. Critical Care 18(5):473 Chatterjee K (2009) The Swan-Ganz catheters: past, present, and future: a viewpoint. Circulation 119(1):147–152 Chu H, Wang Y, Sun Y, Wang G (2016) Accuracy of pleth variability index to predict fluid responsiveness in mechanically ventilated patients: a systematic review and meta-analysis. Journal of Clinical Monitoring and Computing 30(3):265–274 Cumpstey AF, Grocott MP, Mythen MMG (2016) Fluid management and its role in enhanced recovery, In Perioperative Fluid Management (pp. 299-321). Springer, Cham De Backer D, Fagnoul D (2014) Intensive care ultrasound: VI. Fluid responsiveness and shock assessment. Annals of the American Thoracic Society 11(1):129–136 Desai N, Garry D (2018) Assessing dynamic fluid-responsiveness using transthoracic echocardiography in intensive care. BJA Education 18(7):218–226 Desgranges FP, Desebbe O, Ghazouani A, Gilbert K, Keller G, Chiari P, Cannesson M (2011) Influence of the site of measurement on the ability of plethysmographic variability index to predict fluid responsiveness. British Journal of Anaesthesia 107(3):329–335 Evans D, Ferraioli G, Snellings J, Levitov A (2014) Volume responsiveness in critically ill patients: use of sonography to guide management. Journal of Ultrasound in Medicine 33(1):3–7 Forget P, Lois F, De Kock M (2010) Goal-directed fluid management based on the pulse oximeter–derived pleth variability index reduces lactate levels and improves fluid management. Anesthesia & Analgesia 111(4):910–914 Guérin L, Monnet X, Teboul JL (2013) Monitoring volume and fluid responsiveness: from static to dynamic indicators. Best Practice & Research Clinical Anaesthesiology 27(2):177–185 Haas S, Trepte C, Hinteregger M, Fahje R, Sill B, Herich L, Reuter DA (2012) Prediction of volume responsiveness using pleth variability index in patients undergoing cardiac surgery after cardiopulmonary bypass. Journal of Anesthesia 26(5):696–701 Huang H, Shen Q, Liu Y, Xu H, Fang Y (2018) Value of variation index of inferior vena cava diameter in predicting fluid responsiveness in patients with circulatory shock receiving mechanical ventilation: a systematic review and meta-analysis. Critical Care 22(1):1–7 Jalil BA, Cavallazzi R (2018) Predicting fluid responsiveness: a review of literature and a guide for the clinician. The American Journal of Emergency Medicine 36(11):2093–2102 Keller G, Cassar E, Desebbe O, Lehot JJ, Cannesson M (2008) Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers. Critical Care 12(2):R37 Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Critical Care Medicine 13(10):818–829 Lakhal K, Ehrmann S, Benzekri-Lefèvre D, Runge I, Legras A, Dequin PF et al (2011) Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. Critical Care 15(2):R85 Liu T, Xu C, Wang M, Niu Z, Qi D (2019) Reliability of pleth variability index in predicting preload responsiveness of mechanically ventilated patients under various conditions: a systematic review and meta-analysis. BMC Anesthesiology 19(1):1–7 Long E, Oakley E, Duke T, Babl FE, Paediatric Research in Emergency Departments International Collaborative (PREDICT) (2017) Does respiratory variation in inferior vena cava diameter predict fluid responsiveness: a systematic review and meta-analysis. Shock (Augusta, Ga.) 47(5):550–559 Marik PE, Cavallazzi R (2013) Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Critical Care Medicine 41(7):1774–1781 Marik PE, Lemson J (2014) Fluid responsiveness: an evolution of our understanding. British Journal of Anaesthesia 112(4):617–620 Matta JL, Kraemer CE, Tuinman PR, van Westerloo DJ (2019) POCUS series: the use of velocity time integral in assessing cardiac output and fluid responsiveness. Netherlands Journal of Critical Care 27(5):196–198 Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. American Journal of Respiratory and Critical Care Medicine 162(1):134–138 Miller A, Mandeville J (2016) Predicting and measuring fluid responsiveness with echocardiography. Echo Research and Practice 3(2):G1–G12 Monnet X, Guérin L, Jozwiak M, Bataille A, Julien F, Richard C, Teboul JL (2013) Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. British Journal of Anaesthesia 110(2):207–213 Monnet X, Marik PE, Teboul JL (2016) Prediction of fluid responsiveness: an update. Annals of Intensive Care 6(1):111 Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D et al (2011) An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology: The Journal of the American Society of Anesthesiologists 115(3):541–547 Orso D, Guglielmo N, Federici N, Cugini F, Ban A, Mearelli F, Copetti R (2016) Accuracy of the caval index and the expiratory diameter of the inferior vena cava for the diagnosis of dehydration in elderly. Journal of Ultrasound 19(3):203–209 Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL (2012) Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Medicine 38(3):422–428 Pişkin Ö, Öz İİ (2017) Accuracy of pleth variability index compared with inferior vena cava diameter to predict fluid responsiveness in mechanically ventilated patients. Medicine 96(47):e8889 Ramsay MAE, Savege TM, Simpson BRJ, Goodwin R (1974) Controlled sedation with alphaxalone-alphadolone. Br med J 2(5920):656–659 Sakr Y, Rubatto Birri PN, Kotfis K, Nanchal R, Shah B, Kluge S et al (2017) Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Critical Care Medicine 45(3):386–394 Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M (2012) Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Medicine 38(9):1429–1437 Santa-Teresa P, Muñoz J, Montero I, Zurita M, Tomey M, Álvarez-Sala L, García P (2012) Incidence and prognosis of intra-abdominal hypertension in critically ill medical patients: a prospective epidemiological study. Annals of Intensive Care 2(S1):S3 Scheer BV, Perel A, Pfeiffer UJ (2002) Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Critical Care 6(3):199 Theerawit P, Morasert T, Sutherasan Y (2016) Inferior vena cava diameter variation compared with pulse pressure variation as predictors of fluid responsiveness in patients with sepsis. Journal of Critical Care 36:246–251 Wise R, Faurie M, Malbrain ML, Hodgson E (2017) Strategies for intravenous fluid resuscitation in trauma patients. World Journal of Surgery 41(5):1170–1183 Xiang SI, Cao D, Wu J, Chen J, Liu Z, Chen M et al (2016) Diagnostic accuracy of transthoracic echocardiography to predict fluid responsiveness by passive leg raising in the critically ill: a meta-analysis. Open Journal of Emergency Medicine 4(04):83 Yamaura K, Irita K, Kandabashi T, Tohyama K, Takahashi S (2007) Evaluation of finger and forehead pulse oximeters during mild hypothermic cardiopulmonary bypass. Journal of Clinical Monitoring and Computing 21(4):249–252