Dự đoán isoform cytochrome P450 chịu trách nhiệm chuyển hóa một phân tử thuốc
Tóm tắt
Từ khóa
Tài liệu tham khảo
Susnow RG, Dixon SL: Use of robust classification techniques for the prediction of human Cytochrome P450 2D6 inhibition. J Chem Inf Comput Sci. 2003, 43: 1308-1315.
van de Waterbeemd H, Gifford E: ADMET in silico modeling: towards prediction paradise?. Nat Rev Drug Discovery. 2003, 2: 192-204. 10.1038/nrd1032.
Wolf CR, Smith G, Smith RL: Science, medicine and the future pharmacogenetics. Br Med J. 2000, 320: 987-990. 10.1136/bmj.320.7240.987.
Arimoto R: Computational models for predicting interaction with cytochrome P450 enzyme. Curr Top Med Chem. 2006, 6: 1909-1918. 10.2174/156802606778108951.
Haji-Memonian S, Rieger JM, Macdonald TL, Brown ML: Comparative molecular field analysis and QSAR on substrate binding to Cytochrome P450 2D6. Bioorg Med Chem. 2003, 11: 5545-5554. 10.1016/S0968-0896(03)00525-X.
Balakin KV, Ekins S, Bugrim A, Ivanenkov YA, Korolev D, Nikolsky YV, Skorenko AV, Ivashchenko AA, Savchuk NP, Nikolskaya T: Kohonen maps for prediction of binding to human Cytochrome P450 3A5. Drug Metab Dispos. 2004, 32: 1183-1189. 10.1124/dmd.104.000356.
Crivori P, Poggesi I: Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs. Eur J Med Chem. 2006, 41 (7): 795-808. 10.1016/j.ejmech.2006.03.003.
Manga N, Duffy JC, Rowe PH, Cronin MT: Structure-based methods for the prediction of the dominant P450 enzymes in human drug biotransformation: considiration of CYP3A4, CYP2C9, CYP2D6. SAR QSAR Environ Res. 2005, 16: 43-61. 10.1080/10629360412331319871.
Yap CW, Chen YZ: Prediction of Cytochrome P450 3A4, 2D6 and 2C9 inhibitors and substrates by using support vector machines. J Chem Info Model. 2005, 45: 982-992. 10.1021/ci0500536.
Terfloth L, Beinfait B, Gasteiger J: Ligand-based models for the isoforms specificity of Cytochrome P450, 2D6, and 2C9 substrates. J Chem Inf Model. 2007, 47: 1688-1701. 10.1021/ci700010t.
Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36: D901-D906. 10.1093/nar/gkm958.
DrugBank. [http://www.drugbank.ca]
CORINA. [http://www.molecular-networks.com/products/corina]
TSAR-3.3. [http://accelrys.com/products/accord/desktop/tsar.html]
ADEWorksModelBuilder. [http://www.fqs.pl/Chemistry_Materials_Life_Science/products/admeworks_modelbuilder]
Gao H, Lajiness MS, Van Drie J: Enhancement of binary QSAR analysis by a GA-based variable selection method. J Mol Graphics Model. 2002, 20: 259-268. 10.1016/S1093-3263(01)00122-X.
Lucasius CB, Kateman G: Understanding and using genetic algorithm part 1. Concepts, properties and context. Chemon Intell Lab Syst. 1993, 19: 1-33. 10.1016/0169-7439(93)80079-W.
Mishra NK, Kumar M, Raghava GPS: Support vector machine based prediction of glutathione S-transferase proteins. Protein Pept Lett. 2007, 14: 575-80. 10.2174/092986607780990046.
Sneh Lata, Sharma BK, Raghava GP: Analysis and prediction of antibacterial peptides. BMC Bioinfo. 2007, 8: 263-10.1186/1471-2105-8-263.
Burges CJC: A tutorial on support vector machines for pattern recognition. Data Min. Knowledge Discovery. 1998, 2: 127-167.
WEKA (Waikato Environment for Knowledge Analysis). [http://www.cs.waikato.ac.nz/ml/weka/]
Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK: Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural Comput. 2001, 13 (3): 637-649. 10.1162/089976601300014493.
John CP: Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods: support vector learning. 1999, MIT Press, 185-208.
Juan JR, Ludmila IK, Carlos JA: Rotation Forest: A New Classifier Ensemble Method. IEEE Trans Pattern Anal Mach Intell. 2006, 28 (10): 1619-1630. 10.1109/TPAMI.2006.211.
Niels L, Mark H, Eibe F: Logistic Model Trees. Mach Learn. 2005, 59 (1-2): 161-205. 10.1007/s10994-005-0466-3.
G Cooper EH: A Bayesian method for the induction of probabilistic networks from data. Machine Learning. 1992, 9: 309-347.
D Heckerman DG, Chickering DM: Learning Bayesian networks:the combination of knowledge and statistical data. Machine Learning. 1995, 20 (3): 197-243.
Chakravarthy SGJ: Scale-based clustering using the radial basis function network. Proceedings of the IEEE International Conference on Neural Networks. 1994, 897-902.
Cybenko G: Approximation by superpositions of a sigmoidal function. Mathematics of Control Signals, and Systems (MCSS). 1989, 2 (4): 303-314.
Hart PE, Cover TM: Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory. 1967, 13 (1):
K Cios WP, Swiniarski R, Kurgan L: Data Mining: A Knowledge Discovery Approach. Springer, New York. 2007, 620-
John GH, Langley P: Estimating Continuous Distributions in Bayesian Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence Morgan Kaufmann, San Mateo. 1995, 338-345.
John G, Cleary LT: K*: An Instance-based Learner Using an Entropic Distance Measure. Proceedings of the 12th International Conference on Machine learning. 1995, 108-114.
Le Cessie S, Van Houwelingen JC: Ridge Estimators in Logistic Regression. Applied Statistics. 1992, 41 (1): 191-201. 10.2307/2347628.
[http://www.imtech.res.in/raghava/]
Steinbeck CHY, Kuhn S, Horlacher O, Luttmann E, Willighagen EL: The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo- and Bioinformatics. J Chem Inf Comput Sci. 2003, 43 (2): 493-500.
Steinbeck CHC, Kuhn S, Floris M, Guha R, Willighagen EL: Recent Developments of the Chemistry Development Kit (CDK) - An Open-Source Java Library for Chemo- and Bioinformatics. Curr Pharm Des. 2006, 17 (12):
Vlife. [http://www.vlifesciences.com/]
Fuhr U: Induction of drug metabolizing enzymes: Pharmacokinetic and toxicological consequences in human. Cli Pharmacokinet. 2000, 38: 493-504. 10.2165/00003088-200038060-00003.
Singla D, Sharma A, Kaur J, Panwar B, Raghava GP: BIAdb: a curated database of benzylisoquinoline alkaloids. BMC Pharmacol. 10: 4-10.1186/1471-2210-10-4.