Prediction of complications in diabetes mellitus using machine learning models with transplanted topic model features
Tóm tắt
Từ khóa
Tài liệu tham khảo
2018 WHO, Diabetes. 2018. https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed November 26 2022.
Thomas PB, Robertson DH, Chawla NV. Predicting onset of complications from diabetes: a graph based approach. Appl Netw Sci. 2018;3(1):48. https://doi.org/10.1007/s41109-018-0106-z.
Ljubic B, Hai AA, Stanojevic M, Diaz W, Polimac D, Pavlovski M, Obradovic Z. Predicting complications of diabetes mellitus using advanced machine learning algorithms. J Am Med Inform Assoc. 2020;27(9):1343–51. https://doi.org/10.1093/jamia/ocaa120.
Blei DM, Ng AY, Jordan MI. Latent dirichlet allocation. J Mach Learn Res. 2003;3:993–1022.
Blei DM. Probabilistic topic models. Commun ACM. 2012;55(4):77–84. https://doi.org/10.1145/2133806.2133826.
Papadimitriou CH, Raghavan P, Tamaki H, Vempala S. Latent semantic indexing: a probabilistic analysis. J Comput Syst Sci. 2000;61(2):217–35. https://doi.org/10.1006/jcss.2000.1711.
Hofman T. Probabilistic latent semantic indexing. ACM. 1999;50–7. https://doi.org/10.1145/312624.312649.
Griffiths TL, Steyvers M. Finding scientific topics. Proc Natl Acad Sci. 2004;101(Suppl 1):5228–35. https://doi.org/10.1073/pnas.0307752101.
Perotte A, Ranganath R, Hirsch JS, Blei D, Elhadad N. Risk prediction for chronic kidney disease progression using heterogeneous electronic health record data and time series analysis. J Am Med Inform Assoc. 2015;22(4):872–80. https://doi.org/10.1093/jamia/ocv024.
Sarioglu E, Yadav K, Choi HA. Topic Modeling Based Classification of Clinical Reports, in: 51st Annual Meeting of the Association for Computational Linguistics Proceedings of the Student Research Workshop, pages, Sofia, Bulgaria, Association for Computational Linguistics, 2013:67–73.
Restificar A, Ananiadou S. Inferring appropriate eligibility criteria in clinical trial protocols without labeled data. in: Proceedings of the ACM sixth international workshop on Data and text mining in biomedical informatics, 2012:21–28.
Halpern Y, Horng S, Nathanson LA, Shapiro NI, Sontag D. A comparison of dimensionality reduction techniques for unstructured clinical text, in: ICML 2012 Workshop on Clinical Data Analysis, 2012.
Korea:VANK TVANo 21c Sejong Project. http://sejong.prkorea.com/kor/main.jsp. 2022. Accessed December 26 2022.
Blei D. in: LDA-c. 2016. https://github.com/blei-lab/lda-c. Accessed December 10 2022.
Liaw A, Wiener M. Classification and regression by randomForest, R News 2002. 2002. https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf. Accessed December 26 2022.
Greenwell B, Boehmke B, Cunningham J, Developers GGBM. Generalized Boosted Regression Models. 2018. https://cran.r-project.org/web/packages/gbm/index.html. Accessed December 26 2022.
Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H et al. Xgboost:extreme gradient boosting, R package version (4 – 2), 2015. https://cran.r-project.org/web/packages/xgboost/index.html. Accessed December 26 2022.